DeepFaceLab/samples/SampleGeneratorFace.py
2019-01-22 11:52:04 +04:00

112 lines
5.1 KiB
Python

import traceback
import numpy as np
import random
import cv2
from utils import iter_utils
from samples import SampleType
from samples import SampleProcessor
from samples import SampleLoader
from samples import SampleGeneratorBase
'''
arg
output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional)random_sub_size] ,
...
]
'''
class SampleGeneratorFace(SampleGeneratorBase):
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, with_close_to_self=False, sample_process_options=SampleProcessor.Options(), output_sample_types=[], generators_count=2, **kwargs):
super().__init__(samples_path, debug, batch_size)
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
if sort_by_yaw_target_samples_path is not None:
self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET
elif sort_by_yaw:
self.sample_type = SampleType.FACE_YAW_SORTED
elif with_close_to_self:
self.sample_type = SampleType.FACE_WITH_CLOSE_TO_SELF
else:
self.sample_type = SampleType.FACE
self.samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path)
self.generators_count = min ( generators_count, len(self.samples) )
if self.debug:
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )]
else:
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, i ) for i in range(self.generators_count) ]
self.generator_counter = -1
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, generator_id):
samples = self.samples[generator_id::self.generators_count]
data_len = len(samples)
if data_len == 0:
raise ValueError('No training data provided.')
if self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
if all ( [ x == None for x in samples] ):
raise ValueError('Not enough training data. Gather more faces!')
if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
shuffle_idxs = []
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
shuffle_idxs = []
shuffle_idxs_2D = [[]]*data_len
while True:
batches = None
for n_batch in range(self.batch_size):
while True:
sample = None
if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
if len(shuffle_idxs) == 0:
shuffle_idxs = random.sample( range(data_len), data_len )
idx = shuffle_idxs.pop()
sample = samples[ idx ]
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
if len(shuffle_idxs) == 0:
shuffle_idxs = random.sample( range(data_len), data_len )
idx = shuffle_idxs.pop()
if samples[idx] != None:
if len(shuffle_idxs_2D[idx]) == 0:
shuffle_idxs_2D[idx] = random.sample( range(len(samples[idx])), len(samples[idx]) )
idx2 = shuffle_idxs_2D[idx].pop()
sample = samples[idx][idx2]
if sample is not None:
try:
x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if type(x) != tuple and type(x) != list:
raise Exception('SampleProcessor.process returns NOT tuple/list')
if batches is None:
batches = [ [] for _ in range(len(x)) ]
for i in range(len(x)):
batches[i].append ( x[i] )
break
yield [ np.array(batch) for batch in batches]