mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
SAEHD: added new option GAN power 0.0 .. 10.0 Train the network in Generative Adversarial manner. Forces the neural network to learn small details of the face. You can enable/disable this option at any time, but better to enable it when the network is trained enough. Typical value is 1.0 GAN power with pretrain mode will not work. Example of enabling GAN on 81k iters +5k iters https://i.imgur.com/OdXHLhU.jpg https://i.imgur.com/CYAJmJx.jpg dfhd: default Decoder dimensions are now 48 the preview for 256 res is now correctly displayed fixed model naming/renaming/removing Improvements for those involved in post-processing in AfterEffects: Codec is reverted back to x264 in order to properly use in AfterEffects and video players. Merger now always outputs the mask to workspace\data_dst\merged_mask removed raw modes except raw-rgb raw-rgb mode now outputs selected face mask_mode (before square mask) 'export alpha mask' button is replaced by 'show alpha mask'. You can view the alpha mask without recompute the frames. 8) 'merged *.bat' now also output 'result_mask.' video file. 8) 'merged lossless' now uses x264 lossless codec (before PNG codec) result_mask video file is always lossless. Thus you can use result_mask video file as mask layer in the AfterEffects.
188 lines
6.7 KiB
Python
188 lines
6.7 KiB
Python
import multiprocessing
|
|
import operator
|
|
import pickle
|
|
import traceback
|
|
from pathlib import Path
|
|
|
|
import samplelib.PackedFaceset
|
|
from core import pathex
|
|
from core.interact import interact as io
|
|
from core.joblib import Subprocessor
|
|
from DFLIMG import *
|
|
from facelib import FaceType, LandmarksProcessor
|
|
|
|
from .Sample import Sample, SampleType
|
|
|
|
|
|
class SampleLoader:
|
|
samples_cache = dict()
|
|
@staticmethod
|
|
def get_person_id_max_count(samples_path):
|
|
samples = None
|
|
try:
|
|
samples = samplelib.PackedFaceset.load(samples_path)
|
|
except:
|
|
io.log_err(f"Error occured while loading samplelib.PackedFaceset.load {str(samples_dat_path)}, {traceback.format_exc()}")
|
|
|
|
if samples is None:
|
|
raise ValueError("packed faceset not found.")
|
|
persons_name_idxs = {}
|
|
for sample in samples:
|
|
persons_name_idxs[sample.person_name] = 0
|
|
return len(list(persons_name_idxs.keys()))
|
|
|
|
@staticmethod
|
|
def load(sample_type, samples_path):
|
|
samples_cache = SampleLoader.samples_cache
|
|
|
|
if str(samples_path) not in samples_cache.keys():
|
|
samples_cache[str(samples_path)] = [None]*SampleType.QTY
|
|
|
|
samples = samples_cache[str(samples_path)]
|
|
|
|
if sample_type == SampleType.IMAGE:
|
|
if samples[sample_type] is None:
|
|
samples[sample_type] = [ Sample(filename=filename) for filename in io.progress_bar_generator( pathex.get_image_paths(samples_path), "Loading") ]
|
|
|
|
elif sample_type == SampleType.FACE:
|
|
if samples[sample_type] is None:
|
|
try:
|
|
result = samplelib.PackedFaceset.load(samples_path)
|
|
except:
|
|
io.log_err(f"Error occured while loading samplelib.PackedFaceset.load {str(samples_dat_path)}, {traceback.format_exc()}")
|
|
|
|
if result is not None:
|
|
io.log_info (f"Loaded {len(result)} packed faces from {samples_path}")
|
|
|
|
if result is None:
|
|
result = SampleLoader.load_face_samples( pathex.get_image_paths(samples_path) )
|
|
samples[sample_type] = result
|
|
|
|
elif sample_type == SampleType.FACE_TEMPORAL_SORTED:
|
|
result = SampleLoader.load (SampleType.FACE, samples_path)
|
|
result = SampleLoader.upgradeToFaceTemporalSortedSamples(result)
|
|
samples[sample_type] = result
|
|
|
|
return samples[sample_type]
|
|
|
|
@staticmethod
|
|
def load_face_samples ( image_paths):
|
|
result = FaceSamplesLoaderSubprocessor(image_paths).run()
|
|
sample_list = []
|
|
|
|
for filename, \
|
|
( face_type,
|
|
shape,
|
|
landmarks,
|
|
ie_polys,
|
|
eyebrows_expand_mod,
|
|
source_filename,
|
|
) in result:
|
|
sample_list.append( Sample(filename=filename,
|
|
sample_type=SampleType.FACE,
|
|
face_type=FaceType.fromString (face_type),
|
|
shape=shape,
|
|
landmarks=landmarks,
|
|
ie_polys=ie_polys,
|
|
eyebrows_expand_mod=eyebrows_expand_mod,
|
|
source_filename=source_filename,
|
|
))
|
|
return sample_list
|
|
|
|
"""
|
|
@staticmethod
|
|
def load_face_samples ( image_paths):
|
|
sample_list = []
|
|
|
|
for filename in io.progress_bar_generator (image_paths, desc="Loading"):
|
|
dflimg = DFLIMG.load (Path(filename))
|
|
if dflimg is None:
|
|
io.log_err (f"{filename} is not a dfl image file.")
|
|
else:
|
|
sample_list.append( Sample(filename=filename,
|
|
sample_type=SampleType.FACE,
|
|
face_type=FaceType.fromString ( dflimg.get_face_type() ),
|
|
shape=dflimg.get_shape(),
|
|
landmarks=dflimg.get_landmarks(),
|
|
ie_polys=dflimg.get_ie_polys(),
|
|
eyebrows_expand_mod=dflimg.get_eyebrows_expand_mod(),
|
|
source_filename=dflimg.get_source_filename(),
|
|
))
|
|
return sample_list
|
|
"""
|
|
|
|
@staticmethod
|
|
def upgradeToFaceTemporalSortedSamples( samples ):
|
|
new_s = [ (s, s.source_filename) for s in samples]
|
|
new_s = sorted(new_s, key=operator.itemgetter(1))
|
|
|
|
return [ s[0] for s in new_s]
|
|
|
|
|
|
class FaceSamplesLoaderSubprocessor(Subprocessor):
|
|
#override
|
|
def __init__(self, image_paths ):
|
|
self.image_paths = image_paths
|
|
self.image_paths_len = len(image_paths)
|
|
self.idxs = [*range(self.image_paths_len)]
|
|
self.result = [None]*self.image_paths_len
|
|
super().__init__('FaceSamplesLoader', FaceSamplesLoaderSubprocessor.Cli, 60)
|
|
|
|
#override
|
|
def on_clients_initialized(self):
|
|
io.progress_bar ("Loading samples", len (self.image_paths))
|
|
|
|
#override
|
|
def on_clients_finalized(self):
|
|
io.progress_bar_close()
|
|
|
|
#override
|
|
def process_info_generator(self):
|
|
for i in range(min(multiprocessing.cpu_count(), 8) ):
|
|
yield 'CPU%d' % (i), {}, {}
|
|
|
|
#override
|
|
def get_data(self, host_dict):
|
|
if len (self.idxs) > 0:
|
|
idx = self.idxs.pop(0)
|
|
return idx, self.image_paths[idx]
|
|
|
|
return None
|
|
|
|
#override
|
|
def on_data_return (self, host_dict, data):
|
|
self.idxs.insert(0, data[0])
|
|
|
|
#override
|
|
def on_result (self, host_dict, data, result):
|
|
idx, dflimg = result
|
|
self.result[idx] = (self.image_paths[idx], dflimg)
|
|
io.progress_bar_inc(1)
|
|
|
|
#override
|
|
def get_result(self):
|
|
return self.result
|
|
|
|
class Cli(Subprocessor.Cli):
|
|
#override
|
|
def process_data(self, data):
|
|
idx, filename = data
|
|
dflimg = DFLIMG.load (Path(filename))
|
|
|
|
if dflimg is None:
|
|
self.log_err (f"FaceSamplesLoader: {filename} is not a dfl image file.")
|
|
data = None
|
|
else:
|
|
data = (dflimg.get_face_type(),
|
|
dflimg.get_shape(),
|
|
dflimg.get_landmarks(),
|
|
dflimg.get_ie_polys(),
|
|
dflimg.get_eyebrows_expand_mod(),
|
|
dflimg.get_source_filename() )
|
|
|
|
return idx, data
|
|
|
|
#override
|
|
def get_data_name (self, data):
|
|
#return string identificator of your data
|
|
return data[1]
|