mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 13:32:09 -07:00
266 lines
No EOL
14 KiB
Python
266 lines
No EOL
14 KiB
Python
from models import ConverterBase
|
|
from facelib import LandmarksProcessor
|
|
from facelib import FaceType
|
|
import cv2
|
|
import numpy as np
|
|
from utils import image_utils
|
|
from utils.console_utils import *
|
|
|
|
class ConverterMasked(ConverterBase):
|
|
|
|
#override
|
|
def __init__(self, predictor,
|
|
predictor_input_size=0,
|
|
output_size=0,
|
|
face_type=FaceType.FULL,
|
|
base_erode_mask_modifier = 0,
|
|
base_blur_mask_modifier = 0,
|
|
|
|
**in_options):
|
|
|
|
super().__init__(predictor)
|
|
self.predictor_input_size = predictor_input_size
|
|
self.output_size = output_size
|
|
self.face_type = face_type
|
|
self.TFLabConverter = None
|
|
|
|
mode = input_int ("Choose mode: (1) overlay, (2) hist match, (3) hist match bw, (4) seamless (default), (5) seamless hist match, (6) raw : ", 4)
|
|
self.mode = {1:'overlay',
|
|
2:'hist-match',
|
|
3:'hist-match-bw',
|
|
4:'seamless',
|
|
5:'seamless-hist-match',
|
|
6:'raw'}.get (mode, 'seamless')
|
|
|
|
if self.mode == 'raw':
|
|
mode = input_int ("Choose raw mode: (1) rgb, (2) rgb+mask (default), (3) mask only, (4) predicted only : ", 2)
|
|
self.raw_mode = {1:'rgb',
|
|
2:'rgb-mask',
|
|
3:'mask-only',
|
|
4:'predicted-only'}.get (mode, 'rgb-mask')
|
|
|
|
if self.mode != 'raw':
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
|
self.masked_hist_match = input_bool("Masked hist match? (y/n skip:y) : ", True)
|
|
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
|
|
self.hist_match_threshold = np.clip ( input_int("Hist match threshold [0..255] (skip:255) : ", 255), 0, 255)
|
|
|
|
self.use_predicted_mask = input_bool("Use predicted mask? (y/n skip:y) : ", True)
|
|
|
|
if self.mode != 'raw':
|
|
self.erode_mask_modifier = base_erode_mask_modifier + np.clip ( input_int ("Choose erode mask modifier [-200..200] (skip:0) : ", 0), -200, 200)
|
|
self.blur_mask_modifier = base_blur_mask_modifier + np.clip ( input_int ("Choose blur mask modifier [-200..200] (skip:0) : ", 0), -200, 200)
|
|
|
|
self.seamless_erode_mask_modifier = 0
|
|
if self.mode == 'seamless' or self.mode == 'seamless-hist-match':
|
|
self.seamless_erode_mask_modifier = np.clip ( input_int ("Choose seamless erode mask modifier [-100..100] (skip:0) : ", 0), -100, 100)
|
|
|
|
self.output_face_scale = np.clip ( 1.0 + input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0)*0.01, 0.5, 1.5)
|
|
|
|
if self.mode != 'raw':
|
|
self.transfercolor = input_bool("Transfer color from dst face to converted final face? (y/n skip:n) : ", False)
|
|
self.final_image_color_degrade_power = np.clip ( input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
|
|
self.alpha = input_bool("Export png with alpha channel? (y/n skip:n) : ", False)
|
|
|
|
print ("")
|
|
|
|
#override
|
|
def get_mode(self):
|
|
return ConverterBase.MODE_FACE
|
|
|
|
#override
|
|
def dummy_predict(self):
|
|
self.predictor ( np.zeros ( (self.predictor_input_size,self.predictor_input_size,4), dtype=np.float32 ) )
|
|
|
|
#override
|
|
def convert_face (self, img_bgr, img_face_landmarks, debug):
|
|
if debug:
|
|
debugs = [img_bgr.copy()]
|
|
|
|
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
|
|
|
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr, img_face_landmarks)
|
|
|
|
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type)
|
|
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type, scale=self.output_face_scale)
|
|
|
|
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
|
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (self.output_size, self.output_size), flags=cv2.INTER_LANCZOS4 )
|
|
|
|
predictor_input_bgr = cv2.resize (dst_face_bgr, (self.predictor_input_size,self.predictor_input_size))
|
|
predictor_input_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size))
|
|
predictor_input_mask_a = np.expand_dims (predictor_input_mask_a_0, -1)
|
|
|
|
predicted_bgra = self.predictor ( np.concatenate( (predictor_input_bgr, predictor_input_mask_a), -1) )
|
|
|
|
prd_face_bgr = np.clip (predicted_bgra[:,:,0:3], 0, 1.0 )
|
|
prd_face_mask_a_0 = np.clip (predicted_bgra[:,:,3], 0.0, 1.0)
|
|
|
|
if not self.use_predicted_mask:
|
|
prd_face_mask_a_0 = predictor_input_mask_a_0
|
|
|
|
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
|
|
|
|
prd_face_mask_a = np.expand_dims (prd_face_mask_a_0, axis=-1)
|
|
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
|
|
|
|
img_prd_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=float), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
|
|
img_prd_face_mask_aaa = np.clip (img_prd_face_mask_aaa, 0.0, 1.0)
|
|
|
|
img_face_mask_aaa = img_prd_face_mask_aaa
|
|
|
|
if debug:
|
|
debugs += [img_face_mask_aaa.copy()]
|
|
|
|
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0
|
|
|
|
img_face_mask_flatten_aaa = img_face_mask_aaa.copy()
|
|
img_face_mask_flatten_aaa[img_face_mask_flatten_aaa > 0.9] = 1.0
|
|
|
|
maxregion = np.argwhere(img_face_mask_flatten_aaa==1.0)
|
|
|
|
out_img = img_bgr.copy()
|
|
|
|
if self.mode == 'raw':
|
|
if self.raw_mode == 'rgb' or self.raw_mode == 'rgb-mask':
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
|
|
|
if self.raw_mode == 'rgb-mask':
|
|
out_img = np.concatenate ( [out_img, np.expand_dims (img_face_mask_aaa[:,:,0],-1)], -1 )
|
|
|
|
if self.raw_mode == 'mask-only':
|
|
out_img = img_face_mask_aaa
|
|
|
|
if self.raw_mode == 'predicted-only':
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(out_img.shape), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
|
|
|
else:
|
|
if maxregion.size != 0:
|
|
miny,minx = maxregion.min(axis=0)[:2]
|
|
maxy,maxx = maxregion.max(axis=0)[:2]
|
|
|
|
if debug:
|
|
print ("maxregion.size: %d, minx:%d, maxx:%d miny:%d, maxy:%d" % (maxregion.size, minx, maxx, miny, maxy ) )
|
|
|
|
lenx = maxx - minx
|
|
leny = maxy - miny
|
|
if lenx >= 4 and leny >= 4:
|
|
masky = int(minx+(lenx//2))
|
|
maskx = int(miny+(leny//2))
|
|
lowest_len = min (lenx, leny)
|
|
|
|
if debug:
|
|
print ("lowest_len = %f" % (lowest_len) )
|
|
|
|
img_mask_blurry_aaa = img_face_mask_aaa
|
|
if self.erode_mask_modifier != 0:
|
|
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.erode_mask_modifier )
|
|
if debug:
|
|
print ("erode_size = %d" % (ero) )
|
|
if ero > 0:
|
|
img_mask_blurry_aaa = cv2.erode(img_mask_blurry_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
|
elif ero < 0:
|
|
img_mask_blurry_aaa = cv2.dilate(img_mask_blurry_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
|
|
|
if self.seamless_erode_mask_modifier != 0:
|
|
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.seamless_erode_mask_modifier )
|
|
if debug:
|
|
print ("seamless_erode_size = %d" % (ero) )
|
|
if ero > 0:
|
|
img_face_mask_flatten_aaa = cv2.erode(img_face_mask_flatten_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
|
elif ero < 0:
|
|
img_face_mask_flatten_aaa = cv2.dilate(img_face_mask_flatten_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
|
|
|
|
|
if self.blur_mask_modifier > 0:
|
|
blur = int( lowest_len * 0.10 * 0.01*self.blur_mask_modifier )
|
|
if debug:
|
|
print ("blur_size = %d" % (blur) )
|
|
if blur > 0:
|
|
img_mask_blurry_aaa = cv2.blur(img_mask_blurry_aaa, (blur, blur) )
|
|
|
|
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
|
|
|
|
if self.mode == 'hist-match-bw':
|
|
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
|
|
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
|
|
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
|
if debug:
|
|
debugs += [ cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) ]
|
|
|
|
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=prd_face_bgr.dtype)
|
|
|
|
if self.masked_hist_match:
|
|
hist_mask_a *= prd_face_mask_a
|
|
|
|
hist_match_1 = prd_face_bgr*hist_mask_a + (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=prd_face_bgr.dtype)
|
|
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
|
|
|
|
hist_match_2 = dst_face_bgr*hist_mask_a + (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=prd_face_bgr.dtype)
|
|
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
|
|
|
|
prd_face_bgr = image_utils.color_hist_match(hist_match_1, hist_match_2, self.hist_match_threshold )
|
|
|
|
if self.mode == 'hist-match-bw':
|
|
prd_face_bgr = prd_face_bgr.astype(np.float32)
|
|
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
|
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
debugs += [img_mask_blurry_aaa.copy()]
|
|
|
|
if self.mode == 'overlay':
|
|
pass
|
|
|
|
if self.mode == 'seamless' or self.mode == 'seamless-hist-match':
|
|
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa) , 0, 1.0 )
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
|
|
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), (img_bgr*255).astype(np.uint8), (img_face_mask_flatten_aaa*255).astype(np.uint8), (masky,maskx) , cv2.NORMAL_CLONE )
|
|
out_img = out_img.astype(np.float32) / 255.0
|
|
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
|
|
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
|
|
|
|
if self.mode == 'seamless-hist-match':
|
|
out_face_bgr = cv2.warpAffine( out_img, face_mat, (self.output_size, self.output_size) )
|
|
new_out_face_bgr = image_utils.color_hist_match(out_face_bgr, dst_face_bgr, self.hist_match_threshold)
|
|
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
|
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
|
|
|
|
if self.transfercolor:
|
|
if self.TFLabConverter is None:
|
|
self.TFLabConverter = image_utils.TFLabConverter()
|
|
|
|
img_lab_l, img_lab_a, img_lab_b = np.split ( self.TFLabConverter.bgr2lab (img_bgr), 3, axis=-1 )
|
|
out_img_lab_l, out_img_lab_a, out_img_lab_b = np.split ( self.TFLabConverter.bgr2lab (out_img), 3, axis=-1 )
|
|
|
|
out_img = self.TFLabConverter.lab2bgr ( np.concatenate([out_img_lab_l, img_lab_a, img_lab_b], axis=-1) )
|
|
|
|
if self.final_image_color_degrade_power != 0:
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
out_img_reduced = image_utils.reduce_colors(out_img, 256)
|
|
if self.final_image_color_degrade_power == 100:
|
|
out_img = out_img_reduced
|
|
else:
|
|
alpha = self.final_image_color_degrade_power / 100.0
|
|
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
|
|
|
|
if self.alpha:
|
|
out_img = np.concatenate ( [out_img, np.expand_dims (img_mask_blurry_aaa[:,:,0],-1)], -1 )
|
|
|
|
out_img = np.clip (out_img, 0.0, 1.0 )
|
|
|
|
if debug:
|
|
debugs += [out_img.copy()]
|
|
|
|
return debugs if debug else out_img
|
|
|
|
|