mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-05 20:42:11 -07:00
Now you can replace the head. Example: https://www.youtube.com/watch?v=xr5FHd0AdlQ Requirements: Post processing skill in Adobe After Effects or Davinci Resolve. Usage: 1) Find suitable dst footage with the monotonous background behind head 2) Use “extract head” script 3) Gather rich src headset from only one scene (same color and haircut) 4) Mask whole head for src and dst using XSeg editor 5) Train XSeg 6) Apply trained XSeg mask for src and dst headsets 7) Train SAEHD using ‘head’ face_type as regular deepfake model with DF archi. You can use pretrained model for head. Minimum recommended resolution for head is 224. 8) Extract multiple tracks, using Merger: a. Raw-rgb b. XSeg-prd mask c. XSeg-dst mask 9) Using AAE or DavinciResolve, do: a. Hide source head using XSeg-prd mask: content-aware-fill, clone-stamp, background retraction, or other technique b. Overlay new head using XSeg-dst mask Warning: Head faceset can be used for whole_face or less types of training only with XSeg masking. XSegEditor: added button ‘view trained XSeg mask’, so you can see which frames should be masked to improve mask quality.
320 lines
17 KiB
Python
320 lines
17 KiB
Python
import multiprocessing
|
|
from functools import partial
|
|
|
|
import numpy as np
|
|
|
|
from core import mathlib
|
|
from core.interact import interact as io
|
|
from core.leras import nn
|
|
from facelib import FaceType
|
|
from models import ModelBase
|
|
from samplelib import *
|
|
|
|
class QModel(ModelBase):
|
|
#override
|
|
def on_initialize(self):
|
|
device_config = nn.getCurrentDeviceConfig()
|
|
devices = device_config.devices
|
|
self.model_data_format = "NCHW" if len(devices) != 0 and not self.is_debug() else "NHWC"
|
|
nn.initialize(data_format=self.model_data_format)
|
|
tf = nn.tf
|
|
|
|
resolution = self.resolution = 96
|
|
self.face_type = FaceType.FULL
|
|
ae_dims = 128
|
|
e_dims = 128
|
|
d_dims = 64
|
|
self.pretrain = False
|
|
self.pretrain_just_disabled = False
|
|
|
|
masked_training = True
|
|
|
|
models_opt_on_gpu = len(devices) >= 1 and all([dev.total_mem_gb >= 4 for dev in devices])
|
|
models_opt_device = '/GPU:0' if models_opt_on_gpu and self.is_training else '/CPU:0'
|
|
optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
|
|
|
|
input_ch = 3
|
|
bgr_shape = nn.get4Dshape(resolution,resolution,input_ch)
|
|
mask_shape = nn.get4Dshape(resolution,resolution,1)
|
|
|
|
self.model_filename_list = []
|
|
|
|
model_archi = nn.DeepFakeArchi(resolution, mod='quick')
|
|
|
|
with tf.device ('/CPU:0'):
|
|
#Place holders on CPU
|
|
self.warped_src = tf.placeholder (nn.floatx, bgr_shape)
|
|
self.warped_dst = tf.placeholder (nn.floatx, bgr_shape)
|
|
|
|
self.target_src = tf.placeholder (nn.floatx, bgr_shape)
|
|
self.target_dst = tf.placeholder (nn.floatx, bgr_shape)
|
|
|
|
self.target_srcm = tf.placeholder (nn.floatx, mask_shape)
|
|
self.target_dstm = tf.placeholder (nn.floatx, mask_shape)
|
|
|
|
# Initializing model classes
|
|
with tf.device (models_opt_device):
|
|
self.encoder = model_archi.Encoder(in_ch=input_ch, e_ch=e_dims, name='encoder')
|
|
encoder_out_ch = self.encoder.compute_output_channels ( (nn.floatx, bgr_shape))
|
|
|
|
self.inter = model_archi.Inter (in_ch=encoder_out_ch, ae_ch=ae_dims, ae_out_ch=ae_dims, d_ch=d_dims, name='inter')
|
|
inter_out_ch = self.inter.compute_output_channels ( (nn.floatx, (None,encoder_out_ch)))
|
|
|
|
self.decoder_src = model_archi.Decoder(in_ch=inter_out_ch, d_ch=d_dims, name='decoder_src')
|
|
self.decoder_dst = model_archi.Decoder(in_ch=inter_out_ch, d_ch=d_dims, name='decoder_dst')
|
|
|
|
self.model_filename_list += [ [self.encoder, 'encoder.npy' ],
|
|
[self.inter, 'inter.npy' ],
|
|
[self.decoder_src, 'decoder_src.npy'],
|
|
[self.decoder_dst, 'decoder_dst.npy'] ]
|
|
|
|
if self.is_training:
|
|
self.src_dst_trainable_weights = self.encoder.get_weights() + self.inter.get_weights() + self.decoder_src.get_weights() + self.decoder_dst.get_weights()
|
|
|
|
# Initialize optimizers
|
|
self.src_dst_opt = nn.RMSprop(lr=2e-4, lr_dropout=0.3, name='src_dst_opt')
|
|
self.src_dst_opt.initialize_variables(self.src_dst_trainable_weights, vars_on_cpu=optimizer_vars_on_cpu )
|
|
self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ]
|
|
|
|
if self.is_training:
|
|
# Adjust batch size for multiple GPU
|
|
gpu_count = max(1, len(devices) )
|
|
bs_per_gpu = max(1, 4 // gpu_count)
|
|
self.set_batch_size( gpu_count*bs_per_gpu)
|
|
|
|
# Compute losses per GPU
|
|
gpu_pred_src_src_list = []
|
|
gpu_pred_dst_dst_list = []
|
|
gpu_pred_src_dst_list = []
|
|
gpu_pred_src_srcm_list = []
|
|
gpu_pred_dst_dstm_list = []
|
|
gpu_pred_src_dstm_list = []
|
|
|
|
gpu_src_losses = []
|
|
gpu_dst_losses = []
|
|
gpu_src_dst_loss_gvs = []
|
|
|
|
for gpu_id in range(gpu_count):
|
|
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
|
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
|
with tf.device(f'/CPU:0'):
|
|
# slice on CPU, otherwise all batch data will be transfered to GPU first
|
|
gpu_warped_src = self.warped_src [batch_slice,:,:,:]
|
|
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
|
|
gpu_target_src = self.target_src [batch_slice,:,:,:]
|
|
gpu_target_dst = self.target_dst [batch_slice,:,:,:]
|
|
gpu_target_srcm = self.target_srcm[batch_slice,:,:,:]
|
|
gpu_target_dstm = self.target_dstm[batch_slice,:,:,:]
|
|
|
|
# process model tensors
|
|
gpu_src_code = self.inter(self.encoder(gpu_warped_src))
|
|
gpu_dst_code = self.inter(self.encoder(gpu_warped_dst))
|
|
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder_src(gpu_src_code)
|
|
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)
|
|
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)
|
|
|
|
gpu_pred_src_src_list.append(gpu_pred_src_src)
|
|
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst)
|
|
gpu_pred_src_dst_list.append(gpu_pred_src_dst)
|
|
|
|
gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
|
|
gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
|
|
gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
|
|
|
|
gpu_target_srcm_blur = nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) )
|
|
gpu_target_dstm_blur = nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) )
|
|
|
|
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
|
|
gpu_target_dst_anti_masked = gpu_target_dst*(1.0 - gpu_target_dstm_blur)
|
|
|
|
gpu_target_src_masked_opt = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src
|
|
gpu_target_dst_masked_opt = gpu_target_dst_masked if masked_training else gpu_target_dst
|
|
|
|
gpu_pred_src_src_masked_opt = gpu_pred_src_src*gpu_target_srcm_blur if masked_training else gpu_pred_src_src
|
|
gpu_pred_dst_dst_masked_opt = gpu_pred_dst_dst*gpu_target_dstm_blur if masked_training else gpu_pred_dst_dst
|
|
|
|
gpu_psd_target_dst_masked = gpu_pred_src_dst*gpu_target_dstm_blur
|
|
gpu_psd_target_dst_anti_masked = gpu_pred_src_dst*(1.0 - gpu_target_dstm_blur)
|
|
|
|
gpu_src_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
|
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
|
|
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
|
|
|
|
gpu_dst_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
|
|
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
|
|
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
|
|
|
|
gpu_src_losses += [gpu_src_loss]
|
|
gpu_dst_losses += [gpu_dst_loss]
|
|
|
|
gpu_G_loss = gpu_src_loss + gpu_dst_loss
|
|
gpu_src_dst_loss_gvs += [ nn.gradients ( gpu_G_loss, self.src_dst_trainable_weights ) ]
|
|
|
|
|
|
# Average losses and gradients, and create optimizer update ops
|
|
with tf.device (models_opt_device):
|
|
pred_src_src = nn.concat(gpu_pred_src_src_list, 0)
|
|
pred_dst_dst = nn.concat(gpu_pred_dst_dst_list, 0)
|
|
pred_src_dst = nn.concat(gpu_pred_src_dst_list, 0)
|
|
pred_src_srcm = nn.concat(gpu_pred_src_srcm_list, 0)
|
|
pred_dst_dstm = nn.concat(gpu_pred_dst_dstm_list, 0)
|
|
pred_src_dstm = nn.concat(gpu_pred_src_dstm_list, 0)
|
|
|
|
src_loss = nn.average_tensor_list(gpu_src_losses)
|
|
dst_loss = nn.average_tensor_list(gpu_dst_losses)
|
|
src_dst_loss_gv = nn.average_gv_list (gpu_src_dst_loss_gvs)
|
|
src_dst_loss_gv_op = self.src_dst_opt.get_update_op (src_dst_loss_gv)
|
|
|
|
# Initializing training and view functions
|
|
def src_dst_train(warped_src, target_src, target_srcm, \
|
|
warped_dst, target_dst, target_dstm):
|
|
s, d, _ = nn.tf_sess.run ( [ src_loss, dst_loss, src_dst_loss_gv_op],
|
|
feed_dict={self.warped_src :warped_src,
|
|
self.target_src :target_src,
|
|
self.target_srcm:target_srcm,
|
|
self.warped_dst :warped_dst,
|
|
self.target_dst :target_dst,
|
|
self.target_dstm:target_dstm,
|
|
})
|
|
s = np.mean(s)
|
|
d = np.mean(d)
|
|
return s, d
|
|
self.src_dst_train = src_dst_train
|
|
|
|
def AE_view(warped_src, warped_dst):
|
|
return nn.tf_sess.run ( [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm],
|
|
feed_dict={self.warped_src:warped_src,
|
|
self.warped_dst:warped_dst})
|
|
|
|
self.AE_view = AE_view
|
|
else:
|
|
# Initializing merge function
|
|
with tf.device( f'/GPU:0' if len(devices) != 0 else f'/CPU:0'):
|
|
gpu_dst_code = self.inter(self.encoder(self.warped_dst))
|
|
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)
|
|
_, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)
|
|
|
|
def AE_merge( warped_dst):
|
|
|
|
return nn.tf_sess.run ( [gpu_pred_src_dst, gpu_pred_dst_dstm, gpu_pred_src_dstm], feed_dict={self.warped_dst:warped_dst})
|
|
|
|
self.AE_merge = AE_merge
|
|
|
|
# Loading/initializing all models/optimizers weights
|
|
for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"):
|
|
if self.pretrain_just_disabled:
|
|
do_init = False
|
|
if model == self.inter:
|
|
do_init = True
|
|
else:
|
|
do_init = self.is_first_run()
|
|
|
|
if not do_init:
|
|
do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) )
|
|
|
|
if do_init and self.pretrained_model_path is not None:
|
|
pretrained_filepath = self.pretrained_model_path / filename
|
|
if pretrained_filepath.exists():
|
|
do_init = not model.load_weights(pretrained_filepath)
|
|
|
|
if do_init:
|
|
model.init_weights()
|
|
|
|
# initializing sample generators
|
|
if self.is_training:
|
|
training_data_src_path = self.training_data_src_path if not self.pretrain else self.get_pretraining_data_path()
|
|
training_data_dst_path = self.training_data_dst_path if not self.pretrain else self.get_pretraining_data_path()
|
|
|
|
cpu_count = min(multiprocessing.cpu_count(), 8)
|
|
src_generators_count = cpu_count // 2
|
|
dst_generators_count = cpu_count // 2
|
|
|
|
self.set_training_data_generators ([
|
|
SampleGeneratorFace(training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
|
sample_process_options=SampleProcessor.Options(random_flip=True if self.pretrain else False),
|
|
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
|
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
|
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}
|
|
],
|
|
generators_count=src_generators_count ),
|
|
|
|
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
|
sample_process_options=SampleProcessor.Options(random_flip=True if self.pretrain else False),
|
|
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
|
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
|
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}
|
|
],
|
|
generators_count=dst_generators_count )
|
|
])
|
|
|
|
self.last_samples = None
|
|
|
|
#override
|
|
def get_model_filename_list(self):
|
|
return self.model_filename_list
|
|
|
|
#override
|
|
def onSave(self):
|
|
for model, filename in io.progress_bar_generator(self.get_model_filename_list(), "Saving", leave=False):
|
|
model.save_weights ( self.get_strpath_storage_for_file(filename) )
|
|
|
|
#override
|
|
def onTrainOneIter(self):
|
|
|
|
if self.get_iter() % 3 == 0 and self.last_samples is not None:
|
|
( (warped_src, target_src, target_srcm), \
|
|
(warped_dst, target_dst, target_dstm) ) = self.last_samples
|
|
warped_src = target_src
|
|
warped_dst = target_dst
|
|
else:
|
|
samples = self.last_samples = self.generate_next_samples()
|
|
( (warped_src, target_src, target_srcm), \
|
|
(warped_dst, target_dst, target_dstm) ) = samples
|
|
|
|
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm,
|
|
warped_dst, target_dst, target_dstm)
|
|
|
|
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
|
|
|
|
#override
|
|
def onGetPreview(self, samples):
|
|
( (warped_src, target_src, target_srcm),
|
|
(warped_dst, target_dst, target_dstm) ) = samples
|
|
|
|
S, D, SS, DD, DDM, SD, SDM = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst) ) ]
|
|
DDM, SDM, = [ np.repeat (x, (3,), -1) for x in [DDM, SDM] ]
|
|
|
|
target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
|
|
|
|
n_samples = min(4, self.get_batch_size() )
|
|
result = []
|
|
st = []
|
|
for i in range(n_samples):
|
|
ar = S[i], SS[i], D[i], DD[i], SD[i]
|
|
st.append ( np.concatenate ( ar, axis=1) )
|
|
|
|
result += [ ('Quick96', np.concatenate (st, axis=0 )), ]
|
|
|
|
st_m = []
|
|
for i in range(n_samples):
|
|
ar = S[i]*target_srcm[i], SS[i], D[i]*target_dstm[i], DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
|
|
st_m.append ( np.concatenate ( ar, axis=1) )
|
|
|
|
result += [ ('Quick96 masked', np.concatenate (st_m, axis=0 )), ]
|
|
|
|
return result
|
|
|
|
def predictor_func (self, face=None):
|
|
face = nn.to_data_format(face[None,...], self.model_data_format, "NHWC")
|
|
|
|
bgr, mask_dst_dstm, mask_src_dstm = [ nn.to_data_format(x, "NHWC", self.model_data_format).astype(np.float32) for x in self.AE_merge (face) ]
|
|
return bgr[0], mask_src_dstm[0][...,0], mask_dst_dstm[0][...,0]
|
|
|
|
#override
|
|
def get_MergerConfig(self):
|
|
import merger
|
|
return self.predictor_func, (self.resolution, self.resolution, 3), merger.MergerConfigMasked(face_type=self.face_type,
|
|
default_mode = 'overlay',
|
|
)
|
|
|
|
Model = QModel
|