mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
142 lines
6.1 KiB
Python
142 lines
6.1 KiB
Python
import multiprocessing
|
|
import traceback
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from facelib import LandmarksProcessor
|
|
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor,
|
|
SampleType)
|
|
from utils import iter_utils
|
|
|
|
|
|
'''
|
|
arg
|
|
output_sample_types = [
|
|
[SampleProcessor.TypeFlags, size, (optional) {} opts ] ,
|
|
...
|
|
]
|
|
'''
|
|
class SampleGeneratorFace(SampleGeneratorBase):
|
|
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, random_ct_samples_path=None, sample_process_options=SampleProcessor.Options(), output_sample_types=[], add_sample_idx=False, generators_count=2, generators_random_seed=None, **kwargs):
|
|
super().__init__(samples_path, debug, batch_size)
|
|
self.sample_process_options = sample_process_options
|
|
self.output_sample_types = output_sample_types
|
|
self.add_sample_idx = add_sample_idx
|
|
|
|
if sort_by_yaw_target_samples_path is not None:
|
|
self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET
|
|
elif sort_by_yaw:
|
|
self.sample_type = SampleType.FACE_YAW_SORTED
|
|
else:
|
|
self.sample_type = SampleType.FACE
|
|
|
|
if generators_random_seed is not None and len(generators_random_seed) != generators_count:
|
|
raise ValueError("len(generators_random_seed) != generators_count")
|
|
|
|
self.generators_random_seed = generators_random_seed
|
|
|
|
samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path)
|
|
|
|
ct_samples = SampleLoader.load (SampleType.FACE, random_ct_samples_path) if random_ct_samples_path is not None else None
|
|
self.random_ct_sample_chance = 80
|
|
|
|
if self.debug:
|
|
self.generators_count = 1
|
|
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (0, samples, ct_samples) )]
|
|
else:
|
|
self.generators_count = min ( generators_count, len(samples) )
|
|
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, samples[i::self.generators_count], ct_samples ) ) for i in range(self.generators_count) ]
|
|
|
|
self.generator_counter = -1
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
self.generator_counter += 1
|
|
generator = self.generators[self.generator_counter % len(self.generators) ]
|
|
return next(generator)
|
|
|
|
def batch_func(self, param ):
|
|
generator_id, samples, ct_samples = param
|
|
|
|
if self.generators_random_seed is not None:
|
|
np.random.seed ( self.generators_random_seed[generator_id] )
|
|
|
|
samples_len = len(samples)
|
|
samples_idxs = [*range(samples_len)]
|
|
|
|
ct_samples_len = len(ct_samples) if ct_samples is not None else 0
|
|
|
|
if len(samples_idxs) == 0:
|
|
raise ValueError('No training data provided.')
|
|
|
|
if self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
|
if all ( [ samples[idx] == None for idx in samples_idxs] ):
|
|
raise ValueError('Not enough training data. Gather more faces!')
|
|
|
|
if self.sample_type == SampleType.FACE:
|
|
shuffle_idxs = []
|
|
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
|
shuffle_idxs = []
|
|
shuffle_idxs_2D = [[]]*samples_len
|
|
|
|
while True:
|
|
batches = None
|
|
for n_batch in range(self.batch_size):
|
|
while True:
|
|
sample = None
|
|
|
|
if self.sample_type == SampleType.FACE:
|
|
if len(shuffle_idxs) == 0:
|
|
shuffle_idxs = samples_idxs.copy()
|
|
np.random.shuffle(shuffle_idxs)
|
|
|
|
idx = shuffle_idxs.pop()
|
|
sample = samples[ idx ]
|
|
|
|
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
|
if len(shuffle_idxs) == 0:
|
|
shuffle_idxs = samples_idxs.copy()
|
|
np.random.shuffle(shuffle_idxs)
|
|
|
|
idx = shuffle_idxs.pop()
|
|
if samples[idx] != None:
|
|
if len(shuffle_idxs_2D[idx]) == 0:
|
|
a = shuffle_idxs_2D[idx] = [ *range(len(samples[idx])) ]
|
|
np.random.shuffle (a)
|
|
|
|
idx2 = shuffle_idxs_2D[idx].pop()
|
|
sample = samples[idx][idx2]
|
|
|
|
idx = (idx << 16) | (idx2 & 0xFFFF)
|
|
|
|
if sample is not None:
|
|
try:
|
|
ct_sample=None
|
|
if ct_samples is not None:
|
|
if np.random.randint(100) < self.random_ct_sample_chance:
|
|
ct_sample=ct_samples[np.random.randint(ct_samples_len)]
|
|
|
|
x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug, ct_sample=ct_sample)
|
|
except:
|
|
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
|
|
|
|
if type(x) != tuple and type(x) != list:
|
|
raise Exception('SampleProcessor.process returns NOT tuple/list')
|
|
|
|
if batches is None:
|
|
batches = [ [] for _ in range(len(x)) ]
|
|
if self.add_sample_idx:
|
|
batches += [ [] ]
|
|
i_sample_idx = len(batches)-1
|
|
|
|
for i in range(len(x)):
|
|
batches[i].append ( x[i] )
|
|
|
|
if self.add_sample_idx:
|
|
batches[i_sample_idx].append (idx)
|
|
|
|
break
|
|
yield [ np.array(batch) for batch in batches]
|