mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 05:22:06 -07:00
162 lines
6 KiB
Python
162 lines
6 KiB
Python
import os
|
|
import pickle
|
|
from functools import partial
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from interact import interact as io
|
|
from nnlib import nnlib
|
|
|
|
"""
|
|
PoseEstimator estimates pitch, yaw, roll, from FAN aligned face.
|
|
trained on https://www.umdfaces.io
|
|
"""
|
|
|
|
class PoseEstimator(object):
|
|
VERSION = 1
|
|
def __init__ (self, resolution, face_type_str, load_weights=True, weights_file_root=None, training=False):
|
|
exec( nnlib.import_all(), locals(), globals() )
|
|
|
|
self.class_num = 91
|
|
|
|
self.model = PoseEstimator.BuildModel(resolution, class_num=self.class_num)
|
|
|
|
if weights_file_root is not None:
|
|
weights_file_root = Path(weights_file_root)
|
|
else:
|
|
weights_file_root = Path(__file__).parent
|
|
|
|
self.weights_path = weights_file_root / ('PoseEst_%d_%s.h5' % (resolution, face_type_str) )
|
|
|
|
if load_weights:
|
|
self.model.load_weights (str(self.weights_path))
|
|
|
|
idx_tensor = np.array([idx for idx in range(self.class_num)], dtype=K.floatx() )
|
|
idx_tensor = K.constant(idx_tensor)
|
|
|
|
inp_t, = self.model.inputs
|
|
pitch_bins_t, yaw_bins_t, roll_bins_t = self.model.outputs
|
|
|
|
pitch_t, yaw_t, roll_t = K.sum ( pitch_bins_t * idx_tensor, 1), K.sum ( yaw_bins_t * idx_tensor, 1), K.sum ( roll_bins_t * idx_tensor, 1)
|
|
|
|
inp_pitch_bins_t = Input ( (self.class_num,) )
|
|
inp_pitch_t = Input ( (1,) )
|
|
|
|
inp_yaw_bins_t = Input ( (self.class_num,) )
|
|
inp_yaw_t = Input ( (1,) )
|
|
|
|
inp_roll_bins_t = Input ( (self.class_num,) )
|
|
inp_roll_t = Input ( (1,) )
|
|
|
|
alpha = 0.001
|
|
|
|
pitch_loss = K.categorical_crossentropy(inp_pitch_bins_t, pitch_bins_t) \
|
|
+ alpha * K.mean(K.square( inp_pitch_t - pitch_t), -1)
|
|
|
|
yaw_loss = K.categorical_crossentropy(inp_yaw_bins_t, yaw_bins_t) \
|
|
+ alpha * K.mean(K.square( inp_yaw_t - yaw_t), -1)
|
|
|
|
roll_loss = K.categorical_crossentropy(inp_roll_bins_t, roll_bins_t) \
|
|
+ alpha * K.mean(K.square( inp_roll_t - roll_t), -1)
|
|
|
|
|
|
loss = K.mean( pitch_loss + yaw_loss + roll_loss )
|
|
|
|
opt = Adam(lr=0.001, tf_cpu_mode=2)
|
|
|
|
if training:
|
|
self.train = K.function ([inp_t, inp_pitch_bins_t, inp_pitch_t, inp_yaw_bins_t, inp_yaw_t, inp_roll_bins_t, inp_roll_t],
|
|
[loss], opt.get_updates(loss, self.model.trainable_weights) )
|
|
|
|
self.view = K.function ([inp_t], [pitch_t, yaw_t, roll_t] )
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, exc_type=None, exc_value=None, traceback=None):
|
|
return False #pass exception between __enter__ and __exit__ to outter level
|
|
|
|
def save_weights(self):
|
|
self.model.save_weights (str(self.weights_path))
|
|
|
|
def train_on_batch(self, imgs, pitch_yaw_roll):
|
|
c = ( (pitch_yaw_roll+1) * 45.0 ).astype(np.int).astype(K.floatx())
|
|
|
|
inp_pitch = c[:,0:1]
|
|
inp_yaw = c[:,1:2]
|
|
inp_roll = c[:,2:3]
|
|
|
|
inp_pitch_bins = keras.utils.to_categorical(inp_pitch, self.class_num )
|
|
inp_yaw_bins = keras.utils.to_categorical(inp_yaw, self.class_num )
|
|
inp_roll_bins = keras.utils.to_categorical(inp_roll, self.class_num )
|
|
|
|
loss, = self.train( [imgs, inp_pitch_bins, inp_pitch, inp_yaw_bins, inp_yaw, inp_roll_bins, inp_roll] )
|
|
|
|
return loss
|
|
|
|
def extract (self, input_image, is_input_tanh=False):
|
|
if is_input_tanh:
|
|
raise NotImplemented("is_input_tanh")
|
|
|
|
input_shape_len = len(input_image.shape)
|
|
if input_shape_len == 3:
|
|
input_image = input_image[np.newaxis,...]
|
|
|
|
pitch, yaw, roll = self.view( [input_image] )
|
|
result = np.concatenate( (pitch[...,np.newaxis], yaw[...,np.newaxis], roll[...,np.newaxis]), -1 )
|
|
result = np.clip ( result / 45.0 - 1, -1.0, 1.0 )
|
|
|
|
if input_shape_len == 3:
|
|
result = result[0]
|
|
|
|
return result
|
|
|
|
@staticmethod
|
|
def BuildModel ( resolution, class_num):
|
|
exec( nnlib.import_all(), locals(), globals() )
|
|
inp = Input ( (resolution,resolution,3) )
|
|
x = inp
|
|
x = PoseEstimator.Flow(class_num=class_num)(x)
|
|
model = Model(inp,x)
|
|
return model
|
|
|
|
@staticmethod
|
|
def Flow(class_num):
|
|
exec( nnlib.import_all(), locals(), globals() )
|
|
|
|
def func(input):
|
|
x = input
|
|
|
|
# resnet50 = keras.applications.ResNet50(include_top=False, weights='imagenet', input_shape=K.int_shape(x)[1:], pooling='avg')
|
|
# x = resnet50(x)
|
|
# pitch = Dense(class_num, activation='softmax', name='pitch')(x)
|
|
# yaw = Dense(class_num, activation='softmax', name='yaw')(x)
|
|
# roll = Dense(class_num, activation='softmax', name='roll')(x)
|
|
|
|
# return [pitch, yaw, roll]
|
|
|
|
x = Conv2D(64, kernel_size=11, strides=4, padding='same', activation='relu')(x)
|
|
x = MaxPooling2D( (3,3), strides=2 )(x)
|
|
|
|
x = Conv2D(192, kernel_size=5, strides=1, padding='same', activation='relu')(x)
|
|
x = MaxPooling2D( (3,3), strides=2 )(x)
|
|
|
|
x = Conv2D(384, kernel_size=3, strides=1, padding='same', activation='relu')(x)
|
|
x = Conv2D(256, kernel_size=3, strides=1, padding='same', activation='relu')(x)
|
|
x = Conv2D(256, kernel_size=3, strides=1, padding='same', activation='relu')(x)
|
|
x = MaxPooling2D( (3,3), strides=2 )(x)
|
|
|
|
x = Flatten()(x)
|
|
x = Dense(1024, activation='relu')(x)
|
|
x = Dropout(0.5)(x)
|
|
x = Dense(1024, activation='relu')(x)
|
|
|
|
pitch = Dense(class_num, activation='softmax', name='pitch')(x)
|
|
yaw = Dense(class_num, activation='softmax', name='yaw')(x)
|
|
roll = Dense(class_num, activation='softmax', name='roll')(x)
|
|
|
|
return [pitch, yaw, roll]
|
|
|
|
return func
|