mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
806 lines
36 KiB
Python
806 lines
36 KiB
Python
import os
|
|
import sys
|
|
import contextlib
|
|
import numpy as np
|
|
|
|
from utils import std_utils
|
|
from .devicelib import devicelib
|
|
|
|
class nnlib(object):
|
|
device = devicelib #forwards nnlib.devicelib to device in order to use nnlib as standalone lib
|
|
DeviceConfig = devicelib.Config
|
|
active_DeviceConfig = DeviceConfig() #default is one best GPU
|
|
|
|
dlib = None
|
|
keras = None
|
|
keras_contrib = None
|
|
tf = None
|
|
tf_sess = None
|
|
|
|
code_import_tf = None
|
|
code_import_keras = None
|
|
code_import_keras_contrib = None
|
|
code_import_all = None
|
|
|
|
code_import_dlib = None
|
|
|
|
tf_dssim = None
|
|
tf_ssim = None
|
|
tf_resize_like = None
|
|
tf_image_histogram = None
|
|
tf_rgb_to_lab = None
|
|
tf_lab_to_rgb = None
|
|
tf_adain = None
|
|
tf_gaussian_blur = None
|
|
tf_style_loss = None
|
|
|
|
modelify = None
|
|
ReflectionPadding2D = None
|
|
DSSIMLoss = None
|
|
DSSIMMaskLoss = None
|
|
PixelShuffler = None
|
|
SubpixelUpscaler = None
|
|
AddUniformNoise = None
|
|
|
|
ResNet = None
|
|
UNet = None
|
|
UNetTemporalPredictor = None
|
|
NLayerDiscriminator = None
|
|
|
|
code_import_tf_string = \
|
|
"""
|
|
tf = nnlib.tf
|
|
tf_sess = nnlib.tf_sess
|
|
|
|
tf_total_variation = tf.image.total_variation
|
|
tf_dssim = nnlib.tf_dssim
|
|
tf_ssim = nnlib.tf_ssim
|
|
tf_resize_like = nnlib.tf_resize_like
|
|
tf_image_histogram = nnlib.tf_image_histogram
|
|
tf_rgb_to_lab = nnlib.tf_rgb_to_lab
|
|
tf_lab_to_rgb = nnlib.tf_lab_to_rgb
|
|
tf_adain = nnlib.tf_adain
|
|
tf_gaussian_blur = nnlib.tf_gaussian_blur
|
|
tf_style_loss = nnlib.tf_style_loss
|
|
"""
|
|
code_import_keras_string = \
|
|
"""
|
|
keras = nnlib.keras
|
|
K = keras.backend
|
|
|
|
Input = keras.layers.Input
|
|
|
|
Dense = keras.layers.Dense
|
|
Conv2D = keras.layers.Conv2D
|
|
Conv2DTranspose = keras.layers.Conv2DTranspose
|
|
SeparableConv2D = keras.layers.SeparableConv2D
|
|
MaxPooling2D = keras.layers.MaxPooling2D
|
|
BatchNormalization = keras.layers.BatchNormalization
|
|
|
|
LeakyReLU = keras.layers.LeakyReLU
|
|
ReLU = keras.layers.ReLU
|
|
tanh = keras.layers.Activation('tanh')
|
|
sigmoid = keras.layers.Activation('sigmoid')
|
|
Dropout = keras.layers.Dropout
|
|
|
|
Add = keras.layers.Add
|
|
Concatenate = keras.layers.Concatenate
|
|
|
|
Flatten = keras.layers.Flatten
|
|
Reshape = keras.layers.Reshape
|
|
|
|
ZeroPadding2D = keras.layers.ZeroPadding2D
|
|
|
|
RandomNormal = keras.initializers.RandomNormal
|
|
Model = keras.models.Model
|
|
|
|
Adam = keras.optimizers.Adam
|
|
|
|
modelify = nnlib.modelify
|
|
ReflectionPadding2D = nnlib.ReflectionPadding2D
|
|
DSSIMLoss = nnlib.DSSIMLoss
|
|
DSSIMMaskLoss = nnlib.DSSIMMaskLoss
|
|
PixelShuffler = nnlib.PixelShuffler
|
|
SubpixelUpscaler = nnlib.SubpixelUpscaler
|
|
AddUniformNoise = nnlib.AddUniformNoise
|
|
"""
|
|
code_import_keras_contrib_string = \
|
|
"""
|
|
keras_contrib = nnlib.keras_contrib
|
|
GroupNormalization = keras_contrib.layers.GroupNormalization
|
|
InstanceNormalization = keras_contrib.layers.InstanceNormalization
|
|
"""
|
|
code_import_dlib_string = \
|
|
"""
|
|
dlib = nnlib.dlib
|
|
"""
|
|
|
|
code_import_all_string = \
|
|
"""
|
|
ResNet = nnlib.ResNet
|
|
UNet = nnlib.UNet
|
|
UNetTemporalPredictor = nnlib.UNetTemporalPredictor
|
|
NLayerDiscriminator = nnlib.NLayerDiscriminator
|
|
"""
|
|
|
|
|
|
@staticmethod
|
|
def import_tf(device_config = None):
|
|
if nnlib.tf is not None:
|
|
return nnlib.code_import_tf
|
|
|
|
if 'TF_SUPPRESS_STD' in os.environ.keys() and os.environ['TF_SUPPRESS_STD'] == '1':
|
|
suppressor = std_utils.suppress_stdout_stderr().__enter__()
|
|
else:
|
|
suppressor = None
|
|
|
|
if 'CUDA_VISIBLE_DEVICES' in os.environ.keys():
|
|
os.environ.pop('CUDA_VISIBLE_DEVICES')
|
|
|
|
os.environ['TF_MIN_GPU_MULTIPROCESSOR_COUNT'] = '2'
|
|
|
|
import tensorflow as tf
|
|
nnlib.tf = tf
|
|
|
|
if device_config is None:
|
|
device_config = nnlib.active_DeviceConfig
|
|
|
|
tf_ver = [int(x) for x in tf.VERSION.split('.')]
|
|
req_cap = 35
|
|
if tf_ver[0] > 1 or (tf_ver[0] == 1 and tf_ver[1] >= 11):
|
|
req_cap = 37
|
|
|
|
if not device_config.cpu_only and device_config.gpu_compute_caps[0] < req_cap:
|
|
if suppressor is not None:
|
|
suppressor.__exit__()
|
|
|
|
print ("%s does not meet minimum required compute capability: %d.%d. Falling back to CPU mode." % ( device_config.gpu_names[0], req_cap // 10, req_cap % 10 ) )
|
|
device_config = nnlib.DeviceConfig(cpu_only=True)
|
|
|
|
if suppressor is not None:
|
|
suppressor.__enter__()
|
|
|
|
nnlib.active_DeviceConfig = device_config
|
|
|
|
if device_config.cpu_only:
|
|
config = tf.ConfigProto( device_count = {'GPU': 0} )
|
|
else:
|
|
config = tf.ConfigProto()
|
|
visible_device_list = ''
|
|
for idx in device_config.gpu_idxs:
|
|
visible_device_list += str(idx) + ','
|
|
config.gpu_options.visible_device_list=visible_device_list[:-1]
|
|
|
|
config.gpu_options.force_gpu_compatible = True
|
|
config.gpu_options.allow_growth = device_config.allow_growth
|
|
|
|
nnlib.tf_sess = tf.Session(config=config)
|
|
|
|
if suppressor is not None:
|
|
suppressor.__exit__()
|
|
|
|
nnlib.__initialize_tf_functions()
|
|
nnlib.code_import_tf = compile (nnlib.code_import_tf_string,'','exec')
|
|
return nnlib.code_import_tf
|
|
|
|
@staticmethod
|
|
def __initialize_tf_functions():
|
|
tf = nnlib.tf
|
|
|
|
def tf_dssim_(max_value=1.0):
|
|
def func(t1,t2):
|
|
return (1.0 - tf.image.ssim (t1, t2, max_value)) / 2.0
|
|
return func
|
|
nnlib.tf_dssim = tf_dssim_
|
|
|
|
def tf_ssim_(max_value=1.0):
|
|
def func(t1,t2):
|
|
return tf.image.ssim (t1, t2, max_value)
|
|
return func
|
|
nnlib.tf_ssim = tf_ssim_
|
|
|
|
def tf_resize_like_(ref_tensor):
|
|
def func(input_tensor):
|
|
H, W = ref_tensor.get_shape()[1], ref_tensor.get_shape()[2]
|
|
return tf.image.resize_bilinear(input_tensor, [H.value, W.value])
|
|
return func
|
|
nnlib.tf_resize_like = tf_resize_like_
|
|
|
|
def tf_rgb_to_lab():
|
|
def func(rgb_input):
|
|
with tf.name_scope("rgb_to_lab"):
|
|
srgb_pixels = tf.reshape(rgb_input, [-1, 3])
|
|
|
|
with tf.name_scope("srgb_to_xyz"):
|
|
linear_mask = tf.cast(srgb_pixels <= 0.04045, dtype=tf.float32)
|
|
exponential_mask = tf.cast(srgb_pixels > 0.04045, dtype=tf.float32)
|
|
rgb_pixels = (srgb_pixels / 12.92 * linear_mask) + (((srgb_pixels + 0.055) / 1.055) ** 2.4) * exponential_mask
|
|
rgb_to_xyz = tf.constant([
|
|
# X Y Z
|
|
[0.412453, 0.212671, 0.019334], # R
|
|
[0.357580, 0.715160, 0.119193], # G
|
|
[0.180423, 0.072169, 0.950227], # B
|
|
])
|
|
xyz_pixels = tf.matmul(rgb_pixels, rgb_to_xyz)
|
|
|
|
# https://en.wikipedia.org/wiki/Lab_color_space#CIELAB-CIEXYZ_conversions
|
|
with tf.name_scope("xyz_to_cielab"):
|
|
# convert to fx = f(X/Xn), fy = f(Y/Yn), fz = f(Z/Zn)
|
|
|
|
# normalize for D65 white point
|
|
xyz_normalized_pixels = tf.multiply(xyz_pixels, [1/0.950456, 1.0, 1/1.088754])
|
|
|
|
epsilon = 6/29
|
|
linear_mask = tf.cast(xyz_normalized_pixels <= (epsilon**3), dtype=tf.float32)
|
|
exponential_mask = tf.cast(xyz_normalized_pixels > (epsilon**3), dtype=tf.float32)
|
|
fxfyfz_pixels = (xyz_normalized_pixels / (3 * epsilon**2) + 4/29) * linear_mask + (xyz_normalized_pixels ** (1/3)) * exponential_mask
|
|
|
|
# convert to lab
|
|
fxfyfz_to_lab = tf.constant([
|
|
# l a b
|
|
[ 0.0, 500.0, 0.0], # fx
|
|
[116.0, -500.0, 200.0], # fy
|
|
[ 0.0, 0.0, -200.0], # fz
|
|
])
|
|
lab_pixels = tf.matmul(fxfyfz_pixels, fxfyfz_to_lab) + tf.constant([-16.0, 0.0, 0.0])
|
|
return tf.reshape(lab_pixels, tf.shape(rgb_input))
|
|
return func
|
|
nnlib.tf_rgb_to_lab = tf_rgb_to_lab
|
|
|
|
def tf_lab_to_rgb():
|
|
def func(lab):
|
|
with tf.name_scope("lab_to_rgb"):
|
|
lab_pixels = tf.reshape(lab, [-1, 3])
|
|
|
|
# https://en.wikipedia.org/wiki/Lab_color_space#CIELAB-CIEXYZ_conversions
|
|
with tf.name_scope("cielab_to_xyz"):
|
|
# convert to fxfyfz
|
|
lab_to_fxfyfz = tf.constant([
|
|
# fx fy fz
|
|
[1/116.0, 1/116.0, 1/116.0], # l
|
|
[1/500.0, 0.0, 0.0], # a
|
|
[ 0.0, 0.0, -1/200.0], # b
|
|
])
|
|
fxfyfz_pixels = tf.matmul(lab_pixels + tf.constant([16.0, 0.0, 0.0]), lab_to_fxfyfz)
|
|
|
|
# convert to xyz
|
|
epsilon = 6/29
|
|
linear_mask = tf.cast(fxfyfz_pixels <= epsilon, dtype=tf.float32)
|
|
exponential_mask = tf.cast(fxfyfz_pixels > epsilon, dtype=tf.float32)
|
|
xyz_pixels = (3 * epsilon**2 * (fxfyfz_pixels - 4/29)) * linear_mask + (fxfyfz_pixels ** 3) * exponential_mask
|
|
|
|
# denormalize for D65 white point
|
|
xyz_pixels = tf.multiply(xyz_pixels, [0.950456, 1.0, 1.088754])
|
|
|
|
with tf.name_scope("xyz_to_srgb"):
|
|
xyz_to_rgb = tf.constant([
|
|
# r g b
|
|
[ 3.2404542, -0.9692660, 0.0556434], # x
|
|
[-1.5371385, 1.8760108, -0.2040259], # y
|
|
[-0.4985314, 0.0415560, 1.0572252], # z
|
|
])
|
|
rgb_pixels = tf.matmul(xyz_pixels, xyz_to_rgb)
|
|
# avoid a slightly negative number messing up the conversion
|
|
rgb_pixels = tf.clip_by_value(rgb_pixels, 0.0, 1.0)
|
|
linear_mask = tf.cast(rgb_pixels <= 0.0031308, dtype=tf.float32)
|
|
exponential_mask = tf.cast(rgb_pixels > 0.0031308, dtype=tf.float32)
|
|
srgb_pixels = (rgb_pixels * 12.92 * linear_mask) + ((rgb_pixels ** (1/2.4) * 1.055) - 0.055) * exponential_mask
|
|
|
|
return tf.reshape(srgb_pixels, tf.shape(lab))
|
|
return func
|
|
nnlib.tf_lab_to_rgb = tf_lab_to_rgb
|
|
|
|
def tf_image_histogram():
|
|
def func(input):
|
|
x = input
|
|
x += 1 / 255.0
|
|
|
|
output = []
|
|
for i in range(256, 0, -1):
|
|
v = i / 255.0
|
|
y = (x - v) * 1000
|
|
|
|
y = tf.clip_by_value (y, -1.0, 0.0) + 1
|
|
|
|
output.append ( tf.reduce_sum (y) )
|
|
x -= y*v
|
|
|
|
return tf.stack ( output[::-1] )
|
|
return func
|
|
nnlib.tf_image_histogram = tf_image_histogram
|
|
|
|
def tf_adain(epsilon=1e-5):
|
|
def func(content, style):
|
|
axes = [1,2]
|
|
c_mean, c_var = tf.nn.moments(content, axes=axes, keep_dims=True)
|
|
s_mean, s_var = tf.nn.moments(style, axes=axes, keep_dims=True)
|
|
c_std, s_std = tf.sqrt(c_var + epsilon), tf.sqrt(s_var + epsilon)
|
|
return s_std * (content - c_mean) / c_std + s_mean
|
|
return func
|
|
nnlib.tf_adain = tf_adain
|
|
|
|
def tf_gaussian_blur(radius=2.0):
|
|
def gaussian_kernel(size,mean,std):
|
|
d = tf.distributions.Normal( float(mean), float(std) )
|
|
|
|
vals = d.prob(tf.range(start = -int(size), limit = int(size) + 1, dtype = tf.float32))
|
|
|
|
gauss_kernel = tf.einsum('i,j->ij',
|
|
vals,
|
|
vals)
|
|
|
|
return gauss_kernel / tf.reduce_sum(gauss_kernel)
|
|
|
|
gauss_kernel = gaussian_kernel(radius, 1.0, radius )
|
|
gauss_kernel = gauss_kernel[:, :, tf.newaxis, tf.newaxis]
|
|
|
|
def func(input):
|
|
return tf.nn.conv2d(input, gauss_kernel, strides=[1, 1, 1, 1], padding="SAME")
|
|
return func
|
|
nnlib.tf_gaussian_blur = tf_gaussian_blur
|
|
|
|
def tf_style_loss(gaussian_blur_radius=0.0, loss_weight=1.0, batch_normalize=False, epsilon=1e-5):
|
|
def sl(content, style):
|
|
axes = [1,2]
|
|
c_mean, c_var = tf.nn.moments(content, axes=axes, keep_dims=True)
|
|
s_mean, s_var = tf.nn.moments(style, axes=axes, keep_dims=True)
|
|
c_std, s_std = tf.sqrt(c_var + epsilon), tf.sqrt(s_var + epsilon)
|
|
|
|
mean_loss = tf.reduce_sum(tf.squared_difference(c_mean, s_mean))
|
|
std_loss = tf.reduce_sum(tf.squared_difference(c_std, s_std))
|
|
|
|
if batch_normalize:
|
|
#normalize w.r.t batch size
|
|
n = tf.cast(tf.shape(content)[0], dtype=tf.float32)
|
|
mean_loss /= n
|
|
std_loss /= n
|
|
|
|
return (mean_loss + std_loss) * loss_weight
|
|
|
|
def func(target, style):
|
|
target_nc = target.get_shape().as_list()[-1]
|
|
style_nc = style.get_shape().as_list()[-1]
|
|
if target_nc != style_nc:
|
|
raise Exception("target_nc != style_nc")
|
|
|
|
targets = tf.split(target, target_nc, -1)
|
|
styles = tf.split(style, style_nc, -1)
|
|
|
|
style_loss = []
|
|
for i in range(len(targets)):
|
|
if gaussian_blur_radius > 0.0:
|
|
style_loss += [ sl( tf_gaussian_blur(gaussian_blur_radius)(targets[i]),
|
|
tf_gaussian_blur(gaussian_blur_radius)(styles[i])) ]
|
|
else:
|
|
style_loss += [ sl( targets[i],
|
|
styles[i]) ]
|
|
return np.sum ( style_loss )
|
|
return func
|
|
|
|
nnlib.tf_style_loss = tf_style_loss
|
|
|
|
@staticmethod
|
|
def import_keras(device_config = None):
|
|
if nnlib.keras is not None:
|
|
return nnlib.code_import_keras
|
|
|
|
nnlib.import_tf(device_config)
|
|
device_config = nnlib.active_DeviceConfig
|
|
if 'TF_SUPPRESS_STD' in os.environ.keys() and os.environ['TF_SUPPRESS_STD'] == '1':
|
|
suppressor = std_utils.suppress_stdout_stderr().__enter__()
|
|
|
|
import keras as keras_
|
|
nnlib.keras = keras_
|
|
|
|
if device_config.use_fp16:
|
|
nnlib.keras.backend.set_floatx('float16')
|
|
|
|
nnlib.keras.backend.set_session(nnlib.tf_sess)
|
|
nnlib.keras.backend.set_image_data_format('channels_last')
|
|
|
|
if 'TF_SUPPRESS_STD' in os.environ.keys() and os.environ['TF_SUPPRESS_STD'] == '1':
|
|
suppressor.__exit__()
|
|
|
|
nnlib.__initialize_keras_functions()
|
|
nnlib.code_import_keras = compile (nnlib.code_import_keras_string,'','exec')
|
|
|
|
|
|
@staticmethod
|
|
def __initialize_keras_functions():
|
|
tf = nnlib.tf
|
|
keras = nnlib.keras
|
|
K = keras.backend
|
|
|
|
def modelify(model_functor):
|
|
def func(tensor):
|
|
return keras.models.Model (tensor, model_functor(tensor))
|
|
return func
|
|
|
|
nnlib.modelify = modelify
|
|
|
|
class ReflectionPadding2D(keras.layers.Layer):
|
|
def __init__(self, padding=(1, 1), **kwargs):
|
|
self.padding = tuple(padding)
|
|
self.input_spec = [keras.layers.InputSpec(ndim=4)]
|
|
super(ReflectionPadding2D, self).__init__(**kwargs)
|
|
|
|
def compute_output_shape(self, s):
|
|
""" If you are using "channels_last" configuration"""
|
|
return (s[0], s[1] + 2 * self.padding[0], s[2] + 2 * self.padding[1], s[3])
|
|
|
|
def call(self, x, mask=None):
|
|
w_pad,h_pad = self.padding
|
|
return tf.pad(x, [[0,0], [h_pad,h_pad], [w_pad,w_pad], [0,0] ], 'REFLECT')
|
|
nnlib.ReflectionPadding2D = ReflectionPadding2D
|
|
|
|
class DSSIMLoss(object):
|
|
def __init__(self, is_tanh=False):
|
|
self.is_tanh = is_tanh
|
|
|
|
def __call__(self,y_true, y_pred):
|
|
if not self.is_tanh:
|
|
return (1.0 - tf.image.ssim (y_true, y_pred, 1.0)) / 2.0
|
|
else:
|
|
return (1.0 - tf.image.ssim ((y_true/2+0.5), (y_pred/2+0.5), 1.0)) / 2.0
|
|
nnlib.DSSIMLoss = DSSIMLoss
|
|
|
|
class DSSIMLoss(object):
|
|
def __init__(self, is_tanh=False):
|
|
self.is_tanh = is_tanh
|
|
|
|
def __call__(self,y_true, y_pred):
|
|
|
|
if not self.is_tanh:
|
|
loss = (1.0 - tf.image.ssim (y_true, y_pred, 1.0)) / 2.0
|
|
else:
|
|
loss = (1.0 - tf.image.ssim ( (y_true/2+0.5), (y_pred/2+0.5), 1.0)) / 2.0
|
|
|
|
return loss
|
|
nnlib.DSSIMLoss = DSSIMLoss
|
|
|
|
class DSSIMMaskLoss(object):
|
|
def __init__(self, mask_list, is_tanh=False):
|
|
self.mask_list = mask_list
|
|
self.is_tanh = is_tanh
|
|
|
|
def __call__(self,y_true, y_pred):
|
|
total_loss = None
|
|
for mask in self.mask_list:
|
|
|
|
if not self.is_tanh:
|
|
loss = (1.0 - (tf.image.ssim (y_true*mask, y_pred*mask, 1.0))) / 2.0
|
|
else:
|
|
loss = (1.0 - tf.image.ssim ( (y_true/2+0.5)*(mask/2+0.5), (y_pred/2+0.5)*(mask/2+0.5), 1.0)) / 2.0
|
|
|
|
loss = K.cast (loss, K.floatx())
|
|
|
|
if total_loss is None:
|
|
total_loss = loss
|
|
else:
|
|
total_loss += loss
|
|
|
|
return total_loss
|
|
nnlib.DSSIMMaskLoss = DSSIMMaskLoss
|
|
|
|
class PixelShuffler(keras.layers.Layer):
|
|
def __init__(self, size=(2, 2), data_format=None, **kwargs):
|
|
super(PixelShuffler, self).__init__(**kwargs)
|
|
self.data_format = keras.backend.common.normalize_data_format(data_format)
|
|
self.size = keras.utils.conv_utils.normalize_tuple(size, 2, 'size')
|
|
|
|
def call(self, inputs):
|
|
input_shape = keras.backend.int_shape(inputs)
|
|
if len(input_shape) != 4:
|
|
raise ValueError('Inputs should have rank ' +
|
|
str(4) +
|
|
'; Received input shape:', str(input_shape))
|
|
|
|
if self.data_format == 'channels_first':
|
|
return tf.depth_to_space(inputs, self.size[0], 'NCHW')
|
|
|
|
elif self.data_format == 'channels_last':
|
|
return tf.depth_to_space(inputs, self.size[0], 'NHWC')
|
|
|
|
def compute_output_shape(self, input_shape):
|
|
if len(input_shape) != 4:
|
|
raise ValueError('Inputs should have rank ' +
|
|
str(4) +
|
|
'; Received input shape:', str(input_shape))
|
|
|
|
if self.data_format == 'channels_first':
|
|
height = input_shape[2] * self.size[0] if input_shape[2] is not None else None
|
|
width = input_shape[3] * self.size[1] if input_shape[3] is not None else None
|
|
channels = input_shape[1] // self.size[0] // self.size[1]
|
|
|
|
if channels * self.size[0] * self.size[1] != input_shape[1]:
|
|
raise ValueError('channels of input and size are incompatible')
|
|
|
|
return (input_shape[0],
|
|
channels,
|
|
height,
|
|
width)
|
|
|
|
elif self.data_format == 'channels_last':
|
|
height = input_shape[1] * self.size[0] if input_shape[1] is not None else None
|
|
width = input_shape[2] * self.size[1] if input_shape[2] is not None else None
|
|
channels = input_shape[3] // self.size[0] // self.size[1]
|
|
|
|
if channels * self.size[0] * self.size[1] != input_shape[3]:
|
|
raise ValueError('channels of input and size are incompatible')
|
|
|
|
return (input_shape[0],
|
|
height,
|
|
width,
|
|
channels)
|
|
|
|
def get_config(self):
|
|
config = {'size': self.size,
|
|
'data_format': self.data_format}
|
|
base_config = super(PixelShuffler, self).get_config()
|
|
|
|
return dict(list(base_config.items()) + list(config.items()))
|
|
|
|
nnlib.PixelShuffler = PixelShuffler
|
|
nnlib.SubpixelUpscaler = PixelShuffler
|
|
|
|
class AddUniformNoise(keras.layers.Layer):
|
|
def __init__(self, power=1.0, minval=-1.0, maxval=1.0, **kwargs):
|
|
super(AddUniformNoise, self).__init__(**kwargs)
|
|
self.power = power
|
|
self.supports_masking = True
|
|
self.minval = minval
|
|
self.maxval = maxval
|
|
|
|
def call(self, inputs, training=None):
|
|
def noised():
|
|
return inputs + self.power*K.random_uniform(shape=K.shape(inputs), minval=self.minval, maxval=self.maxval)
|
|
return K.in_train_phase(noised, inputs, training=training)
|
|
|
|
def get_config(self):
|
|
config = {'power': self.power, 'minval': self.minval, 'maxval': self.maxval}
|
|
base_config = super(AddUniformNoise, self).get_config()
|
|
return dict(list(base_config.items()) + list(config.items()))
|
|
nnlib.AddUniformNoise = AddUniformNoise
|
|
|
|
@staticmethod
|
|
def import_keras_contrib(device_config = None):
|
|
if nnlib.keras_contrib is not None:
|
|
return nnlib.code_import_keras_contrib
|
|
|
|
import keras_contrib as keras_contrib_
|
|
nnlib.keras_contrib = keras_contrib_
|
|
nnlib.__initialize_keras_contrib_functions()
|
|
nnlib.code_import_keras_contrib = compile (nnlib.code_import_keras_contrib_string,'','exec')
|
|
|
|
@staticmethod
|
|
def __initialize_keras_contrib_functions():
|
|
pass
|
|
|
|
@staticmethod
|
|
def import_dlib( device_config = None):
|
|
if nnlib.dlib is not None:
|
|
return nnlib.code_import_dlib
|
|
|
|
import dlib as dlib_
|
|
nnlib.dlib = dlib_
|
|
if not device_config.cpu_only and len(device_config.gpu_idxs) > 0:
|
|
nnlib.dlib.cuda.set_device(device_config.gpu_idxs[0])
|
|
|
|
|
|
nnlib.code_import_dlib = compile (nnlib.code_import_dlib_string,'','exec')
|
|
|
|
@staticmethod
|
|
def import_all(device_config = None):
|
|
if nnlib.code_import_all is None:
|
|
nnlib.import_tf(device_config)
|
|
nnlib.import_keras(device_config)
|
|
nnlib.import_keras_contrib(device_config)
|
|
nnlib.code_import_all = compile (nnlib.code_import_tf_string + '\n'
|
|
+ nnlib.code_import_keras_string + '\n'
|
|
+ nnlib.code_import_keras_contrib_string
|
|
+ nnlib.code_import_all_string,'','exec')
|
|
nnlib.__initialize_all_functions()
|
|
|
|
return nnlib.code_import_all
|
|
|
|
@staticmethod
|
|
def __initialize_all_functions():
|
|
def ResNet(output_nc, use_batch_norm, ngf=64, n_blocks=6, use_dropout=False):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
|
|
if not use_batch_norm:
|
|
use_bias = True
|
|
def XNormalization(x):
|
|
return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)#GroupNormalization (axis=3, groups=K.int_shape (x)[3] // 4, gamma_initializer=RandomNormal(1., 0.02))(x)
|
|
else:
|
|
use_bias = False
|
|
def XNormalization(x):
|
|
return BatchNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)
|
|
|
|
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
|
|
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
|
|
|
|
def Conv2DTranspose(filters, kernel_size, strides=(1, 1), padding='valid', output_padding=None, data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
|
|
return keras.layers.Conv2DTranspose(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, output_padding=output_padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint)
|
|
|
|
def func(input):
|
|
|
|
|
|
def ResnetBlock(dim):
|
|
def func(input):
|
|
x = input
|
|
|
|
x = ReflectionPadding2D((1,1))(x)
|
|
x = Conv2D(dim, 3, 1, padding='valid')(x)
|
|
x = XNormalization(x)
|
|
x = ReLU()(x)
|
|
|
|
if use_dropout:
|
|
x = Dropout(0.5)(x)
|
|
|
|
x = ReflectionPadding2D((1,1))(x)
|
|
x = Conv2D(dim, 3, 1, padding='valid')(x)
|
|
x = XNormalization(x)
|
|
x = ReLU()(x)
|
|
return Add()([x,input])
|
|
return func
|
|
|
|
x = input
|
|
|
|
x = ReflectionPadding2D((3,3))(x)
|
|
x = Conv2D(ngf, 7, 1, 'valid')(x)
|
|
|
|
x = ReLU()(XNormalization(Conv2D(ngf*2, 4, 2, 'same')(x)))
|
|
x = ReLU()(XNormalization(Conv2D(ngf*4, 4, 2, 'same')(x)))
|
|
|
|
for i in range(n_blocks):
|
|
x = ResnetBlock(ngf*4)(x)
|
|
|
|
x = ReLU()(XNormalization(PixelShuffler()(Conv2D(ngf*2 *4, 3, 1, 'same')(x))))
|
|
x = ReLU()(XNormalization(PixelShuffler()(Conv2D(ngf *4, 3, 1, 'same')(x))))
|
|
|
|
x = ReflectionPadding2D((3,3))(x)
|
|
x = Conv2D(output_nc, 7, 1, 'valid')(x)
|
|
x = tanh(x)
|
|
|
|
return x
|
|
|
|
return func
|
|
|
|
nnlib.ResNet = ResNet
|
|
|
|
# Defines the Unet generator.
|
|
# |num_downs|: number of downsamplings in UNet. For example,
|
|
# if |num_downs| == 7, image of size 128x128 will become of size 1x1
|
|
# at the bottleneck
|
|
def UNet(output_nc, use_batch_norm, num_downs, ngf=64, use_dropout=False):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
|
|
if not use_batch_norm:
|
|
use_bias = True
|
|
def XNormalization(x):
|
|
return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)#GroupNormalization (axis=3, groups=K.int_shape (x)[3] // 4, gamma_initializer=RandomNormal(1., 0.02))(x)
|
|
else:
|
|
use_bias = False
|
|
def XNormalization(x):
|
|
return BatchNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)
|
|
|
|
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
|
|
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
|
|
|
|
def Conv2DTranspose(filters, kernel_size, strides=(1, 1), padding='valid', output_padding=None, data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
|
|
return keras.layers.Conv2DTranspose(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, output_padding=output_padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint)
|
|
|
|
def UNetSkipConnection(outer_nc, inner_nc, sub_model=None, outermost=False, innermost=False, use_dropout=False):
|
|
def func(inp):
|
|
x = inp
|
|
|
|
x = Conv2D(inner_nc, 4, 2, 'valid')(ReflectionPadding2D( (1,1) )(x))
|
|
x = XNormalization(x)
|
|
x = ReLU()(x)
|
|
|
|
if not innermost:
|
|
x = sub_model(x)
|
|
|
|
if not outermost:
|
|
x = Conv2DTranspose(outer_nc, 3, 2, 'same')(x)
|
|
x = XNormalization(x)
|
|
x = ReLU()(x)
|
|
|
|
if not innermost:
|
|
if use_dropout:
|
|
x = Dropout(0.5)(x)
|
|
|
|
x = Concatenate(axis=3)([inp, x])
|
|
else:
|
|
x = Conv2DTranspose(outer_nc, 3, 2, 'same')(x)
|
|
x = tanh(x)
|
|
|
|
|
|
return x
|
|
|
|
return func
|
|
|
|
def func(input):
|
|
|
|
unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=None, innermost=True)
|
|
|
|
#for i in range(num_downs - 5):
|
|
# unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=unet_block, use_dropout=use_dropout)
|
|
|
|
unet_block = UNetSkipConnection(ngf * 4 , ngf * 8, sub_model=unet_block)
|
|
unet_block = UNetSkipConnection(ngf * 2 , ngf * 4, sub_model=unet_block)
|
|
unet_block = UNetSkipConnection(ngf , ngf * 2, sub_model=unet_block)
|
|
unet_block = UNetSkipConnection(output_nc, ngf , sub_model=unet_block, outermost=True)
|
|
|
|
return unet_block(input)
|
|
return func
|
|
nnlib.UNet = UNet
|
|
|
|
#predicts based on two past_image_tensors
|
|
def UNetTemporalPredictor(output_nc, use_batch_norm, num_downs, ngf=64, use_dropout=False):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
def func(inputs):
|
|
past_2_image_tensor, past_1_image_tensor = inputs
|
|
|
|
x = Concatenate(axis=3)([ past_2_image_tensor, past_1_image_tensor ])
|
|
x = UNet(3, use_batch_norm, num_downs=num_downs, ngf=ngf, use_dropout=use_dropout) (x)
|
|
|
|
return x
|
|
|
|
return func
|
|
nnlib.UNetTemporalPredictor = UNetTemporalPredictor
|
|
|
|
def NLayerDiscriminator(use_batch_norm, ndf=64, n_layers=3):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
|
|
if not use_batch_norm:
|
|
use_bias = True
|
|
def XNormalization(x):
|
|
return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)#GroupNormalization (axis=3, groups=K.int_shape (x)[3] // 4, gamma_initializer=RandomNormal(1., 0.02))(x)
|
|
else:
|
|
use_bias = False
|
|
def XNormalization(x):
|
|
return BatchNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)
|
|
|
|
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
|
|
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
|
|
|
|
def func(input):
|
|
x = input
|
|
|
|
x = ZeroPadding2D((1,1))(x)
|
|
x = Conv2D( ndf, 4, 2, 'valid')(x)
|
|
x = LeakyReLU(0.2)(x)
|
|
|
|
for i in range(1, n_layers):
|
|
x = ZeroPadding2D((1,1))(x)
|
|
x = Conv2D( ndf * min(2 ** i, 8), 4, 2, 'valid')(x)
|
|
x = XNormalization(x)
|
|
x = LeakyReLU(0.2)(x)
|
|
|
|
x = ZeroPadding2D((1,1))(x)
|
|
x = Conv2D( ndf * min(2 ** n_layers, 8), 4, 1, 'valid')(x)
|
|
x = XNormalization(x)
|
|
x = LeakyReLU(0.2)(x)
|
|
|
|
x = ZeroPadding2D((1,1))(x)
|
|
return Conv2D( 1, 4, 1, 'valid')(x)
|
|
return func
|
|
nnlib.NLayerDiscriminator = NLayerDiscriminator
|
|
|
|
@staticmethod
|
|
def finalize_all():
|
|
if nnlib.keras_contrib is not None:
|
|
nnlib.keras_contrib = None
|
|
|
|
if nnlib.keras is not None:
|
|
nnlib.keras.backend.clear_session()
|
|
nnlib.keras = None
|
|
|
|
if nnlib.tf is not None:
|
|
nnlib.tf_sess.close()
|
|
nnlib.tf_sess = None
|
|
nnlib.tf = None
|
|
|
|
|