DeepFaceLab/models/Model_FANSeg/Model.py
2020-03-08 10:47:04 +04:00

195 lines
9.2 KiB
Python

import multiprocessing
import operator
from functools import partial
import numpy as np
from core import mathlib
from core.interact import interact as io
from core.leras import nn
from facelib import FaceType, TernausNet
from models import ModelBase
from samplelib import *
class FANSegModel(ModelBase):
#override
def on_initialize_options(self):
device_config = nn.getCurrentDeviceConfig()
yn_str = {True:'y',False:'n'}
#default_resolution = 256
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
ask_override = self.ask_override()
if self.is_first_run() or ask_override:
self.ask_autobackup_hour()
self.ask_target_iter()
self.ask_batch_size(4)
if self.is_first_run():
#resolution = io.input_int("Resolution", default_resolution, add_info="64-512")
#resolution = np.clip ( (resolution // 16) * 16, 64, 512)
#self.options['resolution'] = resolution
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf']).lower()
#override
def on_initialize(self):
device_config = nn.getCurrentDeviceConfig()
nn.initialize(data_format="NHWC")
tf = nn.tf
device_config = nn.getCurrentDeviceConfig()
devices = device_config.devices
self.resolution = resolution = 256#self.options['resolution']
self.face_type = {'h' : FaceType.HALF,
'mf' : FaceType.MID_FULL,
'f' : FaceType.FULL,
'wf' : FaceType.WHOLE_FACE}[ self.options['face_type'] ]
place_model_on_cpu = len(devices) == 0
models_opt_device = '/CPU:0' if place_model_on_cpu else '/GPU:0'
bgr_shape = nn.get4Dshape(resolution,resolution,3)
mask_shape = nn.get4Dshape(resolution,resolution,1)
# Initializing model classes
self.model = TernausNet('FANSeg',
resolution,
FaceType.toString(self.face_type),
load_weights=not self.is_first_run(),
weights_file_root=self.get_model_root_path(),
training=True,
place_model_on_cpu=place_model_on_cpu)
if self.is_training:
# Adjust batch size for multiple GPU
gpu_count = max(1, len(devices) )
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
self.set_batch_size( gpu_count*bs_per_gpu)
# Compute losses per GPU
gpu_pred_list = []
gpu_losses = []
gpu_loss_gvs = []
for gpu_id in range(gpu_count):
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
with tf.device(f'/CPU:0'):
# slice on CPU, otherwise all batch data will be transfered to GPU first
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
gpu_input_t = self.model.input_t [batch_slice,:,:,:]
gpu_target_t = self.model.target_t [batch_slice,:,:,:]
# process model tensors
gpu_pred_logits_t, gpu_pred_t = self.model.net([gpu_input_t])
gpu_pred_list.append(gpu_pred_t)
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
gpu_losses += [gpu_loss]
gpu_loss_gvs += [ nn.tf_gradients ( gpu_loss, self.model.net_weights ) ]
# Average losses and gradients, and create optimizer update ops
with tf.device (models_opt_device):
pred = nn.tf_concat(gpu_pred_list, 0)
loss = tf.reduce_mean(gpu_losses)
loss_gv_op = self.model.opt.get_update_op (nn.tf_average_gv_list (gpu_loss_gvs))
# Initializing training and view functions
def train(input_np, target_np):
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np })
return l
self.train = train
def view(input_np):
return nn.tf_sess.run ( [pred], feed_dict={self.model.input_t :input_np})
self.view = view
# initializing sample generators
training_data_src_path = self.training_data_src_path
training_data_dst_path = self.training_data_dst_path
cpu_count = min(multiprocessing.cpu_count(), 8)
src_generators_count = cpu_count // 2
dst_generators_count = cpu_count // 2
src_generators_count = int(src_generators_count * 1.5)
src_generator = SampleGeneratorFace(training_data_src_path, random_ct_samples_path=training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'ct_mode':'idt', 'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'motion_blur':(25, 5), 'gaussian_blur':(25,5), 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.NONE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
generators_count=src_generators_count )
dst_generator = SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'motion_blur':(25, 5), 'gaussian_blur':(25,5), 'data_format':nn.data_format, 'resolution': resolution},
],
generators_count=dst_generators_count,
raise_on_no_data=False )
if not dst_generator.is_initialized():
io.log_info(f"\nTo view the model on unseen faces, place any aligned faces in {training_data_dst_path}.\n")
self.set_training_data_generators ([src_generator, dst_generator])
#override
def get_model_filename_list(self):
return self.model.model_filename_list
#override
def onSave(self):
self.model.save_weights()
#override
def onTrainOneIter(self):
source_np, target_np = self.generate_next_samples()[0]
loss = self.train (source_np, target_np)
return ( ('loss', loss ), )
#override
def onGetPreview(self, samples):
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
src_samples, dst_samples = samples
source_np, target_np = src_samples
S, TM, SM, = [ np.clip(x, 0.0, 1.0) for x in ([source_np,target_np] + self.view (source_np) ) ]
TM, SM, = [ np.repeat (x, (3,), -1) for x in [TM, SM] ]
green_bg = np.tile( np.array([0,1,0], dtype=np.float32)[None,None,...], (self.resolution,self.resolution,1) )
result = []
st = []
for i in range(n_samples):
ar = S[i]*TM[i]+ green_bg*(1-TM[i]), SM[i], S[i]*SM[i] + green_bg*(1-SM[i])
#todo green bg
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('FANSeg training faces', np.concatenate (st, axis=0 )), ]
if len(dst_samples) != 0:
dst_np, = dst_samples
D, DM, = [ np.clip(x, 0.0, 1.0) for x in ([dst_np] + self.view (dst_np) ) ]
DM, = [ np.repeat (x, (3,), -1) for x in [DM] ]
st = []
for i in range(n_samples):
ar = D[i], DM[i], D[i]*DM[i]+ green_bg*(1-DM[i])
#todo green bg
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('FANSeg unseen faces', np.concatenate (st, axis=0 )), ]
return result
Model = FANSegModel