DeepFaceLab/nnlib/devicelib.py
iperov 1f2b1481ef now you can train models on multiple GPU's on same workspace without cloning any folders.
Model files names will be prefixed with GPU index if GPU choosed explicitly on train/convert start.
if you leave GPU idx choice default, then best GPU idx will be choosed and model file names will not contain index prefix.
It gives you possibility to train same fake with various models or options on multiple GPUs.

H64 and H128: now you can choose 'Lighter autoencoder'. It is same as vram gb <= 4 before this update.

added archived_models.zip contains old experiments

RecycleGAN: archived

devicelib: if your system has no NVML installed (some old cards), then it will work with gpu_idx=0 as 'Generic GeForce GPU' with 2GB vram.

refactorings
2019-01-14 10:48:23 +04:00

186 lines
6.1 KiB
Python

from .pynvml import *
try:
nvmlInit()
hasNVML = True
except:
hasNVML = False
class devicelib:
class Config():
force_gpu_idx = -1
multi_gpu = False
force_gpu_idxs = None
choose_worst_gpu = False
gpu_idxs = []
gpu_names = []
gpu_compute_caps = []
gpu_vram_gb = []
allow_growth = True
use_fp16 = False
cpu_only = False
def __init__ (self, force_gpu_idx = -1,
multi_gpu = False,
force_gpu_idxs = None,
choose_worst_gpu = False,
allow_growth = True,
use_fp16 = False,
cpu_only = False,
**in_options):
self.use_fp16 = use_fp16
if cpu_only:
self.cpu_only = True
else:
self.force_gpu_idx = force_gpu_idx
self.multi_gpu = multi_gpu
self.force_gpu_idxs = force_gpu_idxs
self.choose_worst_gpu = choose_worst_gpu
self.allow_growth = allow_growth
self.gpu_idxs = []
if force_gpu_idxs is not None:
for idx in force_gpu_idxs.split(','):
idx = int(idx)
if devicelib.isValidDeviceIdx(idx):
self.gpu_idxs.append(idx)
else:
gpu_idx = force_gpu_idx if (force_gpu_idx >= 0 and devicelib.isValidDeviceIdx(force_gpu_idx)) else devicelib.getBestDeviceIdx() if not choose_worst_gpu else devicelib.getWorstDeviceIdx()
if gpu_idx != -1:
if self.multi_gpu:
self.gpu_idxs = devicelib.getDeviceIdxsEqualModel( gpu_idx )
if len(self.gpu_idxs) <= 1:
self.multi_gpu = False
else:
self.gpu_idxs = [gpu_idx]
self.cpu_only = (len(self.gpu_idxs) == 0)
if not self.cpu_only:
self.gpu_names = []
self.gpu_compute_caps = []
for gpu_idx in self.gpu_idxs:
self.gpu_names += [devicelib.getDeviceName(gpu_idx)]
self.gpu_compute_caps += [ devicelib.getDeviceComputeCapability ( gpu_idx ) ]
self.gpu_vram_gb += [ devicelib.getDeviceVRAMTotalGb ( gpu_idx ) ]
@staticmethod
def getDevicesWithAtLeastTotalMemoryGB(totalmemsize_gb):
if not hasNVML and totalmemsize_gb <= 2:
return [0]
result = []
for i in range(nvmlDeviceGetCount()):
handle = nvmlDeviceGetHandleByIndex(i)
memInfo = nvmlDeviceGetMemoryInfo( handle )
if (memInfo.total) >= totalmemsize_gb*1024*1024*1024:
result.append (i)
return result
@staticmethod
def getAllDevicesIdxsList():
if not hasNVML:
return [0]
return [ i for i in range(0, nvmlDeviceGetCount() ) ]
@staticmethod
def getAllDevicesIdxsWithNamesList():
if not hasNVML:
return [ (0, devicelib.getDeviceName(0) ) ]
return [ (i, nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(i)).decode() ) for i in range(nvmlDeviceGetCount() ) ]
@staticmethod
def getDeviceVRAMFree (idx):
if not hasNVML:
return 2
if idx < nvmlDeviceGetCount():
memInfo = nvmlDeviceGetMemoryInfo( nvmlDeviceGetHandleByIndex(idx) )
return memInfo.total - memInfo.used
return 0
@staticmethod
def getDeviceVRAMTotalGb (idx):
if not hasNVML:
return 2
if idx < nvmlDeviceGetCount():
memInfo = nvmlDeviceGetMemoryInfo( nvmlDeviceGetHandleByIndex(idx) )
return round ( memInfo.total / (1024*1024*1024) )
return 0
@staticmethod
def getBestDeviceIdx():
if not hasNVML:
return 0
idx = -1
idx_mem = 0
for i in range( nvmlDeviceGetCount() ):
memInfo = nvmlDeviceGetMemoryInfo( nvmlDeviceGetHandleByIndex(i) )
if memInfo.total > idx_mem:
idx = i
idx_mem = memInfo.total
return idx
@staticmethod
def getWorstDeviceIdx():
if not hasNVML:
return 0
idx = -1
idx_mem = sys.maxsize
for i in range( nvmlDeviceGetCount() ):
memInfo = nvmlDeviceGetMemoryInfo( nvmlDeviceGetHandleByIndex(i) )
if memInfo.total < idx_mem:
idx = i
idx_mem = memInfo.total
return idx
@staticmethod
def isValidDeviceIdx(idx):
if not hasNVML:
return (idx == 0)
return (idx < nvmlDeviceGetCount())
@staticmethod
def getDeviceIdxsEqualModel(idx):
if not hasNVML:
return [0] if idx == 0 else []
result = []
idx_name = nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(idx)).decode()
for i in range( nvmlDeviceGetCount() ):
if nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(i)).decode() == idx_name:
result.append (i)
return result
@staticmethod
def getDeviceName (idx):
if not hasNVML:
return 'Generic GeForce GPU'
if idx < nvmlDeviceGetCount():
return nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(idx)).decode()
return None
@staticmethod
def getDeviceComputeCapability(idx):
if not hasNVML:
return 99 if idx == 0 else 0
result = 0
if idx < nvmlDeviceGetCount():
result = nvmlDeviceGetCudaComputeCapability(nvmlDeviceGetHandleByIndex(idx))
return result[0] * 10 + result[1]