DeepFaceLab/mainscripts/Extractor.py
iperov 1f2b1481ef now you can train models on multiple GPU's on same workspace without cloning any folders.
Model files names will be prefixed with GPU index if GPU choosed explicitly on train/convert start.
if you leave GPU idx choice default, then best GPU idx will be choosed and model file names will not contain index prefix.
It gives you possibility to train same fake with various models or options on multiple GPUs.

H64 and H128: now you can choose 'Lighter autoencoder'. It is same as vram gb <= 4 before this update.

added archived_models.zip contains old experiments

RecycleGAN: archived

devicelib: if your system has no NVML installed (some old cards), then it will work with gpu_idx=0 as 'Generic GeForce GPU' with 2GB vram.

refactorings
2019-01-14 10:48:23 +04:00

455 lines
No EOL
21 KiB
Python

import traceback
import os
import sys
import time
import multiprocessing
from tqdm import tqdm
from pathlib import Path
import numpy as np
import cv2
from utils import Path_utils
from utils.DFLPNG import DFLPNG
from utils import image_utils
from facelib import FaceType
import facelib
from nnlib import nnlib
from utils.SubprocessorBase import SubprocessorBase
class ExtractSubprocessor(SubprocessorBase):
#override
def __init__(self, input_data, type, image_size, face_type, debug, multi_gpu=False, cpu_only=False, manual=False, manual_window_size=0, detector=None, output_path=None ):
self.input_data = input_data
self.type = type
self.image_size = image_size
self.face_type = face_type
self.debug = debug
self.multi_gpu = multi_gpu
self.cpu_only = cpu_only
self.detector = detector
self.output_path = output_path
self.manual = manual
self.manual_window_size = manual_window_size
self.result = []
no_response_time_sec = 60 if not self.manual else 999999
super().__init__('Extractor', no_response_time_sec)
#override
def onHostClientsInitialized(self):
if self.manual == True:
self.wnd_name = 'Manual pass'
cv2.namedWindow(self.wnd_name)
self.landmarks = None
self.param_x = -1
self.param_y = -1
self.param_rect_size = -1
self.param = {'x': 0, 'y': 0, 'rect_size' : 5, 'rect_locked' : False, 'redraw_needed' : False }
def onMouse(event, x, y, flags, param):
if event == cv2.EVENT_MOUSEWHEEL:
mod = 1 if flags > 0 else -1
param['rect_size'] = max (5, param['rect_size'] + 10*mod)
elif event == cv2.EVENT_LBUTTONDOWN:
param['rect_locked'] = not param['rect_locked']
param['redraw_needed'] = True
elif not param['rect_locked']:
param['x'] = x
param['y'] = y
cv2.setMouseCallback(self.wnd_name, onMouse, self.param)
def get_devices_for_type (self, type, multi_gpu):
if (type == 'rects' or type == 'landmarks'):
if multi_gpu:
devices = nnlib.device.getDevicesWithAtLeastTotalMemoryGB(2)
if not multi_gpu or len(devices) == 0:
devices = [nnlib.device.getBestDeviceIdx()]
if len(devices) == 0:
devices = [0]
devices = [ (idx, nnlib.device.getDeviceName(idx), nnlib.device.getDeviceVRAMTotalGb(idx) ) for idx in devices]
elif type == 'final':
devices = [ (i, 'CPU%d' % (i), 0 ) for i in range(0, multiprocessing.cpu_count()) ]
return devices
#override
def process_info_generator(self):
base_dict = {'type' : self.type,
'image_size': self.image_size,
'face_type': self.face_type,
'debug': self.debug,
'output_dir': str(self.output_path),
'detector': self.detector}
if not self.cpu_only:
for (device_idx, device_name, device_total_vram_gb) in self.get_devices_for_type(self.type, self.multi_gpu):
num_processes = 1
if not self.manual and self.type == 'rects' and self.detector == 'mt':
num_processes = int ( max (1, device_total_vram_gb / 2) )
for i in range(0, num_processes ):
client_dict = base_dict.copy()
client_dict['device_idx'] = device_idx
client_dict['device_name'] = device_name if num_processes == 1 else '%s #%d' % (device_name,i)
client_dict['device_type'] = 'GPU'
yield client_dict['device_name'], {}, client_dict
else:
num_processes = 1
if not self.manual and self.type == 'rects' and self.detector == 'mt':
num_processes = int ( max (1, multiprocessing.cpu_count() / 2 ) )
for i in range(0, num_processes ):
client_dict = base_dict.copy()
client_dict['device_idx'] = 0
client_dict['device_name'] = 'CPU' if num_processes == 1 else 'CPU #%d' % (i),
client_dict['device_type'] = 'CPU'
yield client_dict['device_name'], {}, client_dict
#override
def get_no_process_started_message(self):
if (self.type == 'rects' or self.type == 'landmarks'):
print ( 'You have no capable GPUs. Try to close programs which can consume VRAM, and run again.')
elif self.type == 'final':
print ( 'Unable to start CPU processes.')
#override
def onHostGetProgressBarDesc(self):
return None
#override
def onHostGetProgressBarLen(self):
return len (self.input_data)
#override
def onHostGetData(self, host_dict):
if not self.manual:
if len (self.input_data) > 0:
return self.input_data.pop(0)
else:
skip_remaining = False
allow_remark_faces = False
while len (self.input_data) > 0:
data = self.input_data[0]
filename, faces = data
is_frame_done = False
go_to_prev_frame = False
# Can we mark an image that already has a marked face?
if allow_remark_faces:
allow_remark_faces = False
# If there was already a face then lock the rectangle to it until the mouse is clicked
if len(faces) > 0:
prev_rect = faces.pop()[0]
self.param['rect_locked'] = True
faces.clear()
self.param['rect_size'] = ( prev_rect[2] - prev_rect[0] ) / 2
self.param['x'] = ( ( prev_rect[0] + prev_rect[2] ) / 2 ) * self.view_scale
self.param['y'] = ( ( prev_rect[1] + prev_rect[3] ) / 2 ) * self.view_scale
if len(faces) == 0:
self.original_image = cv2.imread(filename)
(h,w,c) = self.original_image.shape
self.view_scale = 1.0 if self.manual_window_size == 0 else self.manual_window_size / (w if w > h else h)
self.original_image = cv2.resize (self.original_image, ( int(w*self.view_scale), int(h*self.view_scale) ), interpolation=cv2.INTER_LINEAR)
(h,w,c) = self.original_image.shape
self.text_lines_img = (image_utils.get_draw_text_lines ( self.original_image, (0,0, self.original_image.shape[1], min(100, self.original_image.shape[0]) ),
[ 'Match landmarks with face exactly. Click to confirm/unconfirm selection',
'[Enter] - confirm and continue to next unmarked frame',
'[Space] - skip to next unmarked frame',
'[Mouse wheel] - change rect',
'[,] [.]- prev frame, next frame',
'[Q] - skip remaining frames'
], (1, 1, 1) )*255).astype(np.uint8)
while True:
key = cv2.waitKey(1) & 0xFF
if key == ord('\r') or key == ord('\n'):
faces.append ( [(self.rect), self.landmarks] )
is_frame_done = True
break
elif key == ord(' '):
is_frame_done = True
break
elif key == ord('.'):
allow_remark_faces = True
# Only save the face if the rect is still locked
if self.param['rect_locked']:
faces.append ( [(self.rect), self.landmarks] )
is_frame_done = True
break
elif key == ord(',') and len(self.result) > 0:
# Only save the face if the rect is still locked
if self.param['rect_locked']:
faces.append ( [(self.rect), self.landmarks] )
go_to_prev_frame = True
break
elif key == ord('q'):
skip_remaining = True
break
new_param_x = self.param['x'] / self.view_scale
new_param_y = self.param['y'] / self.view_scale
new_param_rect_size = self.param['rect_size']
new_param_x = np.clip (new_param_x, 0, w-1)
new_param_y = np.clip (new_param_y, 0, h-1)
if self.param_x != new_param_x or \
self.param_y != new_param_y or \
self.param_rect_size != new_param_rect_size or \
self.param['redraw_needed']:
self.param_x = new_param_x
self.param_y = new_param_y
self.param_rect_size = new_param_rect_size
self.rect = ( int(self.param_x-self.param_rect_size),
int(self.param_y-self.param_rect_size),
int(self.param_x+self.param_rect_size),
int(self.param_y+self.param_rect_size) )
return [filename, [self.rect]]
else:
is_frame_done = True
if is_frame_done:
self.result.append ( data )
self.input_data.pop(0)
self.inc_progress_bar(1)
self.param['redraw_needed'] = True
self.param['rect_locked'] = False
elif go_to_prev_frame:
self.input_data.insert(0, self.result.pop() )
self.inc_progress_bar(-1)
allow_remark_faces = True
self.param['redraw_needed'] = True
self.param['rect_locked'] = False
elif skip_remaining:
while len(self.input_data) > 0:
self.result.append( self.input_data.pop(0) )
self.inc_progress_bar(1)
return None
#override
def onHostDataReturn (self, host_dict, data):
if not self.manual:
self.input_data.insert(0, data)
#override
def onClientInitialize(self, client_dict):
self.safe_print ('Running on %s.' % (client_dict['device_name']) )
self.type = client_dict['type']
self.image_size = client_dict['image_size']
self.face_type = client_dict['face_type']
self.device_idx = client_dict['device_idx']
self.cpu_only = client_dict['device_type'] == 'CPU'
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
self.debug = client_dict['debug']
self.detector = client_dict['detector']
self.e = None
device_config = nnlib.DeviceConfig ( cpu_only=self.cpu_only, force_gpu_idx=self.device_idx, allow_growth=True)
if self.type == 'rects':
if self.detector is not None:
if self.detector == 'mt':
nnlib.import_all (device_config)
self.e = facelib.MTCExtractor(nnlib.keras, nnlib.tf, nnlib.tf_sess)
elif self.detector == 'dlib':
nnlib.import_dlib (device_config)
self.e = facelib.DLIBExtractor(nnlib.dlib)
self.e.__enter__()
elif self.type == 'landmarks':
nnlib.import_all (device_config)
self.e = facelib.LandmarksExtractor(nnlib.keras)
self.e.__enter__()
elif self.type == 'final':
pass
return None
#override
def onClientFinalize(self):
if self.e is not None:
self.e.__exit__()
#override
def onClientProcessData(self, data):
filename_path = Path( data[0] )
image = cv2.imread( str(filename_path) )
if image is None:
print ( 'Failed to extract %s, reason: cv2.imread() fail.' % ( str(filename_path) ) )
else:
if self.type == 'rects':
rects = self.e.extract_from_bgr (image)
return [str(filename_path), rects]
elif self.type == 'landmarks':
rects = data[1]
landmarks = self.e.extract_from_bgr (image, rects)
return [str(filename_path), landmarks]
elif self.type == 'final':
result = []
faces = data[1]
if self.debug:
debug_output_file = '{}_{}'.format( str(Path(str(self.output_path) + '_debug') / filename_path.stem), 'debug.png')
debug_image = image.copy()
for (face_idx, face) in enumerate(faces):
output_file = '{}_{}{}'.format(str(self.output_path / filename_path.stem), str(face_idx), '.png')
rect = face[0]
image_landmarks = np.array(face[1])
if self.debug:
facelib.LandmarksProcessor.draw_rect_landmarks (debug_image, rect, image_landmarks, self.image_size, self.face_type)
if self.face_type == FaceType.MARK_ONLY:
face_image = image
face_image_landmarks = image_landmarks
else:
image_to_face_mat = facelib.LandmarksProcessor.get_transform_mat (image_landmarks, self.image_size, self.face_type)
face_image = cv2.warpAffine(image, image_to_face_mat, (self.image_size, self.image_size), cv2.INTER_LANCZOS4)
face_image_landmarks = facelib.LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
cv2.imwrite(output_file, face_image)
DFLPNG.embed_data(output_file, face_type = FaceType.toString(self.face_type),
landmarks = face_image_landmarks.tolist(),
yaw_value = facelib.LandmarksProcessor.calc_face_yaw (face_image_landmarks),
pitch_value = facelib.LandmarksProcessor.calc_face_pitch (face_image_landmarks),
source_filename = filename_path.name,
source_rect= rect,
source_landmarks = image_landmarks.tolist()
)
result.append (output_file)
if self.debug:
cv2.imwrite(debug_output_file, debug_image )
return result
return None
#overridable
def onClientGetDataName (self, data):
#return string identificator of your data
return data[0]
#override
def onHostResult (self, host_dict, data, result):
if self.manual == True:
self.landmarks = result[1][0][1]
image = cv2.addWeighted (self.original_image,1.0,self.text_lines_img,1.0,0)
view_rect = (np.array(self.rect) * self.view_scale).astype(np.int).tolist()
view_landmarks = (np.array(self.landmarks) * self.view_scale).astype(np.int).tolist()
facelib.LandmarksProcessor.draw_rect_landmarks (image, view_rect, view_landmarks, self.image_size, self.face_type)
if self.param['rect_locked']:
facelib.draw_landmarks(image, view_landmarks, (255,255,0) )
self.param['redraw_needed'] = False
cv2.imshow (self.wnd_name, image)
return 0
else:
if self.type == 'rects':
self.result.append ( result )
elif self.type == 'landmarks':
self.result.append ( result )
elif self.type == 'final':
self.result += result
return 1
#override
def onFinalizeAndGetResult(self):
if self.manual == True:
cv2.destroyAllWindows()
return self.result
'''
detector
'dlib'
'mt'
'manual'
face_type
'full_face'
'avatar'
'''
def main (input_dir, output_dir, debug, detector='mt', multi_gpu=True, cpu_only=False, manual_fix=False, manual_window_size=0, image_size=256, face_type='full_face'):
print ("Running extractor.\r\n")
input_path = Path(input_dir)
output_path = Path(output_dir)
face_type = FaceType.fromString(face_type)
if not input_path.exists():
print('Input directory not found. Please ensure it exists.')
return
if output_path.exists():
for filename in Path_utils.get_image_paths(output_path):
Path(filename).unlink()
else:
output_path.mkdir(parents=True, exist_ok=True)
if debug:
debug_output_path = Path(str(output_path) + '_debug')
if debug_output_path.exists():
for filename in Path_utils.get_image_paths(debug_output_path):
Path(filename).unlink()
else:
debug_output_path.mkdir(parents=True, exist_ok=True)
input_path_image_paths = Path_utils.get_image_unique_filestem_paths(input_path, verbose=True)
images_found = len(input_path_image_paths)
faces_detected = 0
if images_found != 0:
if detector == 'manual':
print ('Performing manual extract...')
extracted_faces = ExtractSubprocessor ([ (filename,[]) for filename in input_path_image_paths ], 'landmarks', image_size, face_type, debug, cpu_only=cpu_only, manual=True, manual_window_size=manual_window_size).process()
else:
print ('Performing 1st pass...')
extracted_rects = ExtractSubprocessor ([ (x,) for x in input_path_image_paths ], 'rects', image_size, face_type, debug, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, detector=detector).process()
print ('Performing 2nd pass...')
extracted_faces = ExtractSubprocessor (extracted_rects, 'landmarks', image_size, face_type, debug, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False).process()
if manual_fix:
print ('Performing manual fix...')
if all ( np.array ( [ len(data[1]) > 0 for data in extracted_faces] ) == True ):
print ('All faces are detected, manual fix not needed.')
else:
extracted_faces = ExtractSubprocessor (extracted_faces, 'landmarks', image_size, face_type, debug, manual=True, manual_window_size=manual_window_size).process()
if len(extracted_faces) > 0:
print ('Performing 3rd pass...')
final_imgs_paths = ExtractSubprocessor (extracted_faces, 'final', image_size, face_type, debug, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, output_path=output_path).process()
faces_detected = len(final_imgs_paths)
print('-------------------------')
print('Images found: %d' % (images_found) )
print('Faces detected: %d' % (faces_detected) )
print('-------------------------')