DeepFaceLab/facelib/TernausNet.py

225 lines
8.6 KiB
Python

import os
import pickle
from functools import partial
from pathlib import Path
import cv2
import numpy as np
from core.interact import interact as io
from core.leras import nn
"""
Dataset used to train located in official DFL mega.nz folder
https://mega.nz/#F!b9MzCK4B!zEAG9txu7uaRUjXz9PtBqg
using https://github.com/ternaus/TernausNet
TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation
"""
class TernausNet(object):
VERSION = 1
def __init__ (self, name, resolution, face_type_str, load_weights=True, weights_file_root=None, training=False, place_model_on_cpu=False):
nn.initialize(data_format="NHWC")
tf = nn.tf
class Ternaus(nn.ModelBase):
def on_build(self, in_ch, base_ch):
self.features_0 = nn.Conv2D (in_ch, base_ch, kernel_size=3, padding='SAME')
self.blurpool_0 = nn.BlurPool (filt_size=3)
self.features_3 = nn.Conv2D (base_ch, base_ch*2, kernel_size=3, padding='SAME')
self.blurpool_3 = nn.BlurPool (filt_size=3)
self.features_6 = nn.Conv2D (base_ch*2, base_ch*4, kernel_size=3, padding='SAME')
self.features_8 = nn.Conv2D (base_ch*4, base_ch*4, kernel_size=3, padding='SAME')
self.blurpool_8 = nn.BlurPool (filt_size=3)
self.features_11 = nn.Conv2D (base_ch*4, base_ch*8, kernel_size=3, padding='SAME')
self.features_13 = nn.Conv2D (base_ch*8, base_ch*8, kernel_size=3, padding='SAME')
self.blurpool_13 = nn.BlurPool (filt_size=3)
self.features_16 = nn.Conv2D (base_ch*8, base_ch*8, kernel_size=3, padding='SAME')
self.features_18 = nn.Conv2D (base_ch*8, base_ch*8, kernel_size=3, padding='SAME')
self.blurpool_18 = nn.BlurPool (filt_size=3)
self.conv_center = nn.Conv2D (base_ch*8, base_ch*8, kernel_size=3, padding='SAME')
self.conv1_up = nn.Conv2DTranspose (base_ch*8, base_ch*4, kernel_size=3, padding='SAME')
self.conv1 = nn.Conv2D (base_ch*12, base_ch*8, kernel_size=3, padding='SAME')
self.conv2_up = nn.Conv2DTranspose (base_ch*8, base_ch*4, kernel_size=3, padding='SAME')
self.conv2 = nn.Conv2D (base_ch*12, base_ch*8, kernel_size=3, padding='SAME')
self.conv3_up = nn.Conv2DTranspose (base_ch*8, base_ch*2, kernel_size=3, padding='SAME')
self.conv3 = nn.Conv2D (base_ch*6, base_ch*4, kernel_size=3, padding='SAME')
self.conv4_up = nn.Conv2DTranspose (base_ch*4, base_ch, kernel_size=3, padding='SAME')
self.conv4 = nn.Conv2D (base_ch*3, base_ch*2, kernel_size=3, padding='SAME')
self.conv5_up = nn.Conv2DTranspose (base_ch*2, base_ch//2, kernel_size=3, padding='SAME')
self.conv5 = nn.Conv2D (base_ch//2+base_ch, base_ch, kernel_size=3, padding='SAME')
self.out_conv = nn.Conv2D (base_ch, 1, kernel_size=3, padding='SAME')
def forward(self, inp):
x, = inp
x = x0 = tf.nn.relu(self.features_0(x))
x = self.blurpool_0(x)
x = x1 = tf.nn.relu(self.features_3(x))
x = self.blurpool_3(x)
x = tf.nn.relu(self.features_6(x))
x = x2 = tf.nn.relu(self.features_8(x))
x = self.blurpool_8(x)
x = tf.nn.relu(self.features_11(x))
x = x3 = tf.nn.relu(self.features_13(x))
x = self.blurpool_13(x)
x = tf.nn.relu(self.features_16(x))
x = x4 = tf.nn.relu(self.features_18(x))
x = self.blurpool_18(x)
x = self.conv_center(x)
x = tf.nn.relu(self.conv1_up(x))
x = tf.concat( [x,x4], -1)
x = tf.nn.relu(self.conv1(x))
x = tf.nn.relu(self.conv2_up(x))
x = tf.concat( [x,x3], -1)
x = tf.nn.relu(self.conv2(x))
x = tf.nn.relu(self.conv3_up(x))
x = tf.concat( [x,x2], -1)
x = tf.nn.relu(self.conv3(x))
x = tf.nn.relu(self.conv4_up(x))
x = tf.concat( [x,x1], -1)
x = tf.nn.relu(self.conv4(x))
x = tf.nn.relu(self.conv5_up(x))
x = tf.concat( [x,x0], -1)
x = tf.nn.relu(self.conv5(x))
logits = self.out_conv(x)
return logits, tf.nn.sigmoid(logits)
if weights_file_root is not None:
weights_file_root = Path(weights_file_root)
else:
weights_file_root = Path(__file__).parent
self.weights_file_root = weights_file_root
with tf.device ('/CPU:0'):
#Place holders on CPU
self.input_t = tf.placeholder (nn.tf_floatx, nn.get4Dshape(resolution,resolution,3) )
self.target_t = tf.placeholder (nn.tf_floatx, nn.get4Dshape(resolution,resolution,1) )
# Initializing model classes
with tf.device ('/CPU:0' if place_model_on_cpu else '/GPU:0'):
self.net = Ternaus(3, 64, name='Ternaus')
self.net_weights = self.net.get_weights()
self.model_filename_list = [ [self.net, '%s_%d_%s.npy' % (name, resolution, face_type_str) ] ]
if training:
self.opt = nn.TFRMSpropOptimizer(lr=0.0001, name='opt')
self.opt.initialize_variables (self.net_weights, vars_on_cpu=place_model_on_cpu)
self.model_filename_list += [ [self.opt, '%s_%d_%s_opt.npy' % (name, resolution, face_type_str) ] ]
else:
_, pred = self.net([self.input_t])
def net_run(input_np):
return nn.tf_sess.run ( [pred], feed_dict={self.input_t :input_np})[0]
self.net_run = net_run
# Loading/initializing all models/optimizers weights
for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"):
do_init = not load_weights
if not do_init:
do_init = not model.load_weights( self.weights_file_root / filename )
if do_init:
model.init_weights()
if model == self.net:
try:
with open( Path(__file__).parent / 'vgg11_enc_weights.npy', 'rb' ) as f:
d = pickle.loads (f.read())
for i in [0,3,6,8,11,13,16,18]:
model.get_layer_by_name ('features_%d' % i).set_weights ( d['features.%d' % i] )
except:
io.log_err("Unable to load VGG11 pretrained weights from vgg11_enc_weights.npy")
def save_weights(self):
for model, filename in io.progress_bar_generator(self.model_filename_list, "Saving"):
model.save_weights( self.weights_file_root / filename )
def extract (self, input_image):
input_shape_len = len(input_image.shape)
if input_shape_len == 3:
input_image = input_image[None,...]
result = np.clip ( self.net_run(input_image), 0, 1.0 )
result[result < 0.1] = 0 #get rid of noise
if input_shape_len == 3:
result = result[0]
return result
"""
if load_weights:
self.net.load_weights (self.weights_path)
else:
self.net.init_weights()
if load_weights:
self.opt.load_weights (self.opt_path)
else:
self.opt.init_weights()
"""
"""
if training:
try:
with open( Path(__file__).parent / 'vgg11_enc_weights.npy', 'rb' ) as f:
d = pickle.loads (f.read())
for i in [0,3,6,8,11,13,16,18]:
s = 'features.%d' % i
self.model.get_layer (s).set_weights ( d[s] )
except:
io.log_err("Unable to load VGG11 pretrained weights from vgg11_enc_weights.npy")
conv_weights_list = []
for layer in self.model.layers:
if 'CA.' in layer.name:
conv_weights_list += [layer.weights[0]] #Conv2D kernel_weights
CAInitializerMP ( conv_weights_list )
"""
"""
if training:
inp_t = Input ( (resolution, resolution, 3) )
real_t = Input ( (resolution, resolution, 1) )
out_t = self.model(inp_t)
loss = K.mean(10*K.binary_crossentropy(real_t,out_t) )
out_t_diff1 = out_t[:, 1:, :, :] - out_t[:, :-1, :, :]
out_t_diff2 = out_t[:, :, 1:, :] - out_t[:, :, :-1, :]
total_var_loss = K.mean( 0.1*K.abs(out_t_diff1), axis=[1, 2, 3] ) + K.mean( 0.1*K.abs(out_t_diff2), axis=[1, 2, 3] )
opt = Adam(lr=0.0001, beta_1=0.5, beta_2=0.999, tf_cpu_mode=2)
self.train_func = K.function ( [inp_t, real_t], [K.mean(loss)], opt.get_updates( [loss], self.model.trainable_weights) )
"""