DeepFaceLab/converters/ConverterMasked.py

407 lines
22 KiB
Python

import traceback
from .Converter import Converter
from facelib import LandmarksProcessor
from facelib import FaceType
from facelib import FANSegmentator
import cv2
import numpy as np
import imagelib
from interact import interact as io
from joblib import SubprocessFunctionCaller
from utils.pickle_utils import AntiPickler
import time
'''
default_mode = {1:'overlay',
2:'hist-match',
3:'hist-match-bw',
4:'seamless',
5:'seamless-hist-match',
6:'raw'}
'''
class ConverterMasked(Converter):
#override
def __init__(self, predictor_func,
predictor_input_size=0,
predictor_masked=True,
face_type=FaceType.FULL,
default_mode = 4,
base_erode_mask_modifier = 0,
base_blur_mask_modifier = 0,
default_erode_mask_modifier = 0,
default_blur_mask_modifier = 0,
clip_hborder_mask_per = 0):
super().__init__(predictor_func, Converter.TYPE_FACE)
#dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ) )
time.sleep(2)
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func)
self.predictor_func_host = AntiPickler(predictor_func_host)
self.predictor_func = predictor_func
self.predictor_masked = predictor_masked
self.predictor_input_size = predictor_input_size
self.face_type = face_type
self.clip_hborder_mask_per = clip_hborder_mask_per
mode = io.input_int ("Choose mode: (1) overlay, (2) hist match, (3) hist match bw, (4) seamless, (5) raw. Default - %d : " % (default_mode) , default_mode)
mode_dict = {1:'overlay',
2:'hist-match',
3:'hist-match-bw',
4:'seamless',
5:'raw'}
self.mode = mode_dict.get (mode, mode_dict[default_mode] )
self.suppress_seamless_jitter = False
if self.mode == 'raw':
mode = io.input_int ("Choose raw mode: (1) rgb, (2) rgb+mask (default), (3) mask only, (4) predicted only : ", 2)
self.raw_mode = {1:'rgb',
2:'rgb-mask',
3:'mask-only',
4:'predicted-only'}.get (mode, 'rgb-mask')
if self.mode != 'raw':
if self.mode == 'seamless':
self.suppress_seamless_jitter = io.input_bool ("Suppress seamless jitter? [ y/n ] (?:help skip:n ) : ", False, help_message="Seamless clone produces face jitter. You can suppress it, but process can take a long time." )
if io.input_bool("Seamless hist match? (y/n skip:n) : ", False):
self.mode = 'seamless-hist-match'
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
self.masked_hist_match = io.input_bool("Masked hist match? (y/n skip:y) : ", True)
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold [0..255] (skip:255) : ", 255), 0, 255)
if face_type == FaceType.FULL:
self.mask_mode = io.input_int ("Mask mode: (1) learned, (2) dst, (3) FAN-prd, (4) FAN-dst (?) help. Default - %d : " % (1) , 1, help_message="If you learned mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face.")
else:
self.mask_mode = io.input_int ("Mask mode: (1) learned, (2) dst . Default - %d : " % (1) , 1)
if self.mask_mode == 3 or self.mask_mode == 4:
self.fan_seg = None
if self.mode != 'raw':
self.erode_mask_modifier = base_erode_mask_modifier + np.clip ( io.input_int ("Choose erode mask modifier [-200..200] (skip:%d) : " % (default_erode_mask_modifier), default_erode_mask_modifier), -200, 200)
self.blur_mask_modifier = base_blur_mask_modifier + np.clip ( io.input_int ("Choose blur mask modifier [-200..200] (skip:%d) : " % (default_blur_mask_modifier), default_blur_mask_modifier), -200, 200)
self.seamless_erode_mask_modifier = 0
if 'seamless' in self.mode:
self.seamless_erode_mask_modifier = np.clip ( io.input_int ("Choose seamless erode mask modifier [-100..100] (skip:0) : ", 0), -100, 100)
self.output_face_scale = np.clip ( 1.0 + io.input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0)*0.01, 0.5, 1.5)
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct','lct'])
self.super_resolution = io.input_bool("Apply super resolution? (y/n skip:n) : ", False, help_message="Enhance details by applying DCSCN network.")
if self.mode != 'raw':
self.final_image_color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
self.alpha = io.input_bool("Export png with alpha channel? (y/n skip:n) : ", False)
io.log_info ("")
self.over_res = 4 if self.suppress_seamless_jitter else 1
if self.super_resolution:
host_proc, dc_upscale = SubprocessFunctionCaller.make_pair( imagelib.DCSCN().upscale )
self.dc_host = AntiPickler(host_proc)
self.dc_upscale = dc_upscale
else:
self.dc_host = None
#overridable
def on_host_tick(self):
self.predictor_func_host.obj.process_messages()
if self.dc_host is not None:
self.dc_host.obj.process_messages()
#overridable
def on_cli_initialize(self):
if (self.mask_mode == 3 or self.mask_mode == 4) and self.fan_seg == None:
self.fan_seg = FANSegmentator(256, FaceType.toString(FaceType.FULL) )
#override
def cli_convert_face (self, img_bgr, img_face_landmarks, debug):
if self.over_res != 1:
img_bgr = cv2.resize ( img_bgr, ( img_bgr.shape[1]*self.over_res, img_bgr.shape[0]*self.over_res ) )
img_face_landmarks = img_face_landmarks*self.over_res
if debug:
debugs = [img_bgr.copy()]
img_size = img_bgr.shape[1], img_bgr.shape[0]
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
output_size = self.predictor_input_size
if self.super_resolution:
output_size *= 2
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=self.face_type)
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=self.face_type, scale=self.output_face_scale)
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_LANCZOS4 )
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_LANCZOS4 )
predictor_input_bgr = cv2.resize (dst_face_bgr, (self.predictor_input_size,self.predictor_input_size))
if self.predictor_masked:
prd_face_bgr, prd_face_mask_a_0 = self.predictor_func (predictor_input_bgr)
prd_face_bgr = np.clip (prd_face_bgr, 0, 1.0 )
prd_face_mask_a_0 = np.clip (prd_face_mask_a_0, 0.0, 1.0)
else:
predicted = self.predictor_func (predictor_input_bgr)
prd_face_bgr = np.clip (predicted, 0, 1.0 )
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size))
if self.super_resolution:
if debug:
tmp = cv2.resize (prd_face_bgr, (output_size,output_size), cv2.INTER_CUBIC)
debugs += [ np.clip( cv2.warpAffine( tmp, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
prd_face_bgr = self.dc_upscale(prd_face_bgr)
if debug:
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
if self.predictor_masked:
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
else:
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
if self.mask_mode == 2: #dst
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
elif self.mask_mode == 3: #FAN-prd
prd_face_bgr_256 = cv2.resize (prd_face_bgr, (256,256) )
prd_face_bgr_256_mask = self.fan_seg.extract_from_bgr( prd_face_bgr_256[np.newaxis,...] ) [0]
prd_face_mask_a_0 = cv2.resize (prd_face_bgr_256_mask, (output_size,output_size), cv2.INTER_CUBIC)
elif self.mask_mode == 4: #FAN-dst
face_256_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, 256, face_type=FaceType.FULL)
dst_face_256_bgr = cv2.warpAffine(img_bgr, face_256_mat, (256, 256), flags=cv2.INTER_LANCZOS4 )
dst_face_256_mask = self.fan_seg.extract_from_bgr( dst_face_256_bgr[np.newaxis,...] ) [0]
prd_face_mask_a_0 = cv2.resize (dst_face_256_mask, (output_size,output_size), cv2.INTER_CUBIC)
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
prd_face_mask_a = prd_face_mask_a_0[...,np.newaxis]
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
img_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
img_face_mask_aaa = np.clip (img_face_mask_aaa, 0.0, 1.0)
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0 #get rid of noise
if debug:
debugs += [img_face_mask_aaa.copy()]
if 'seamless' in self.mode:
#mask used for cv2.seamlessClone
img_face_seamless_mask_aaa = None
for i in range(9, 0, -1):
a = img_face_mask_aaa > i / 10.0
if len(np.argwhere(a)) == 0:
continue
img_face_seamless_mask_aaa = img_face_mask_aaa.copy()
img_face_seamless_mask_aaa[a] = 1.0
img_face_seamless_mask_aaa[img_face_seamless_mask_aaa <= i / 10.0] = 0.0
out_img = img_bgr.copy()
if self.mode == 'raw':
if self.raw_mode == 'rgb' or self.raw_mode == 'rgb-mask':
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
if self.raw_mode == 'rgb-mask':
out_img = np.concatenate ( [out_img, np.expand_dims (img_face_mask_aaa[:,:,0],-1)], -1 )
if self.raw_mode == 'mask-only':
out_img = img_face_mask_aaa
if self.raw_mode == 'predicted-only':
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(out_img.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
elif ('seamless' not in self.mode) or (img_face_seamless_mask_aaa is not None):
#averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
ar = []
for i in range(1, 10):
maxregion = np.argwhere( img_face_mask_aaa > i / 10.0 )
if maxregion.size != 0:
miny,minx = maxregion.min(axis=0)[:2]
maxy,maxx = maxregion.max(axis=0)[:2]
lenx = maxx - minx
leny = maxy - miny
maskx = ( minx+(lenx/2) )
masky = ( miny+(leny/2) )
if lenx >= 4 and leny >= 4:
ar += [ [ lenx, leny, maskx, masky] ]
if len(ar) > 0:
lenx, leny, maskx, masky = np.mean ( ar, axis=0 )
if debug:
io.log_info ("lenx/leny:(%d/%d) maskx/masky:(%f/%f)" % (lenx, leny, maskx, masky ) )
maskx = int( maskx )
masky = int( masky )
lowest_len = min (lenx, leny)
if debug:
io.log_info ("lowest_len = %f" % (lowest_len) )
img_mask_blurry_aaa = img_face_mask_aaa
if self.erode_mask_modifier != 0:
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.erode_mask_modifier )
if debug:
io.log_info ("erode_size = %d" % (ero) )
if ero > 0:
img_mask_blurry_aaa = cv2.erode(img_mask_blurry_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
elif ero < 0:
img_mask_blurry_aaa = cv2.dilate(img_mask_blurry_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
if self.seamless_erode_mask_modifier != 0:
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.seamless_erode_mask_modifier )
if debug:
io.log_info ("seamless_erode_size = %d" % (ero) )
if ero > 0:
img_face_seamless_mask_aaa = cv2.erode(img_face_seamless_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
elif ero < 0:
img_face_seamless_mask_aaa = cv2.dilate(img_face_seamless_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
img_face_seamless_mask_aaa = np.clip (img_face_seamless_mask_aaa, 0, 1)
if self.clip_hborder_mask_per > 0: #clip hborder before blur
prd_hborder_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=np.float32)
prd_border_size = int ( prd_hborder_rect_mask_a.shape[1] * self.clip_hborder_mask_per )
prd_hborder_rect_mask_a[:,0:prd_border_size,:] = 0
prd_hborder_rect_mask_a[:,-prd_border_size:,:] = 0
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
img_prd_hborder_rect_mask_a = cv2.warpAffine( prd_hborder_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
img_prd_hborder_rect_mask_a = np.expand_dims (img_prd_hborder_rect_mask_a, -1)
img_mask_blurry_aaa *= img_prd_hborder_rect_mask_a
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
if debug:
debugs += [img_mask_blurry_aaa.copy()]
if self.blur_mask_modifier > 0:
blur = int( lowest_len * 0.10 * 0.01*self.blur_mask_modifier )
if debug:
io.log_info ("blur_size = %d" % (blur) )
if blur > 0:
img_mask_blurry_aaa = cv2.blur(img_mask_blurry_aaa, (blur, blur) )
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
if debug:
debugs += [img_mask_blurry_aaa.copy()]
if self.color_transfer_mode is not None:
if self.color_transfer_mode == 'rct':
if debug:
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (prd_face_bgr*255).astype(np.uint8), 0, 255),
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
source_mask=prd_face_mask_a, target_mask=prd_face_mask_a)
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
if debug:
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
elif self.color_transfer_mode == 'lct':
if debug:
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
prd_face_bgr = np.clip( prd_face_bgr, 0.0, 1.0)
if debug:
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
if self.mode == 'hist-match-bw':
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
if debug:
debugs += [ cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) ]
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
if self.masked_hist_match:
hist_mask_a *= prd_face_mask_a
hist_match_1 = prd_face_bgr*hist_mask_a + (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
hist_match_2 = dst_face_bgr*hist_mask_a + (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, self.hist_match_threshold )
if self.mode == 'hist-match-bw':
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
out_img = np.clip(out_img, 0.0, 1.0)
if debug:
debugs += [out_img.copy()]
if self.mode == 'overlay':
pass
if 'seamless' in self.mode:
try:
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), (img_bgr*255).astype(np.uint8), (img_face_seamless_mask_aaa*255).astype(np.uint8), (maskx,masky) , cv2.NORMAL_CLONE )
out_img = out_img.astype(dtype=np.float32) / 255.0
except Exception as e:
#seamlessClone may fail in some cases
e_str = traceback.format_exc()
if 'MemoryError' in e_str:
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
else:
print ("Seamless fail: " + e_str)
if debug:
debugs += [out_img.copy()]
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
if self.mode == 'seamless-hist-match':
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
new_out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, self.hist_match_threshold)
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
if self.final_image_color_degrade_power != 0:
if debug:
debugs += [out_img.copy()]
out_img_reduced = imagelib.reduce_colors(out_img, 256)
if self.final_image_color_degrade_power == 100:
out_img = out_img_reduced
else:
alpha = self.final_image_color_degrade_power / 100.0
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
if self.alpha:
out_img = np.concatenate ( [out_img, np.expand_dims (img_mask_blurry_aaa[:,:,0],-1)], -1 )
if self.over_res != 1:
out_img = cv2.resize ( out_img, ( img_bgr.shape[1] // self.over_res, img_bgr.shape[0] // self.over_res ) )
out_img = np.clip (out_img, 0.0, 1.0 )
if debug:
debugs += [out_img.copy()]
return debugs if debug else out_img