DeepFaceLab/models/Model_XSeg/Model.py
Colombo 0c2e1c3944 SAEHD:
Maximum resolution is increased to 640.

‘hd’ archi is removed. ‘hd’ was experimental archi created to remove subpixel shake, but ‘lr_dropout’ and ‘disable random warping’ do that better.

‘uhd’ is renamed to ‘-u’
dfuhd and liaeuhd will be automatically renamed to df-u and liae-u in existing models.

Added new experimental archi (key -d) which doubles the resolution using the same computation cost.
It is mean same configs will be x2 faster, or for example you can set 448 resolution and it will train as 224.
Strongly recommended not to train from scratch and use pretrained models.

New archi naming:
'df' keeps more identity-preserved face.
'liae' can fix overly different face shapes.
'-u' increased likeness of the face.
'-d' (experimental) doubling the resolution using the same computation cost
Examples: df, liae, df-d, df-ud, liae-ud, ...

Improved GAN training (GAN_power option).  It was used for dst model, but actually we don’t need it for dst.
Instead, a second src GAN model with x2 smaller patch size was added, so the overall quality for hi-res models should be higher.

Added option ‘Uniform yaw distribution of samples (y/n)’:
	Helps to fix blurry side faces due to small amount of them in the faceset.

Quick96:
	Now based on df-ud archi and 20% faster.

XSeg trainer:
	Improved sample generator.
Now it randomly adds the background from other samples.
Result is reduced chance of random mask noise on the area outside the face.
Now you can specify ‘batch_size’ in range 2-16.

Reduced size of samples with applied XSeg mask. Thus size of packed samples with applied xseg mask is also reduced.
2020-06-19 09:45:55 +04:00

216 lines
No EOL
10 KiB
Python

import multiprocessing
import operator
from functools import partial
import numpy as np
from core import mathlib
from core.interact import interact as io
from core.leras import nn
from facelib import FaceType, XSegNet
from models import ModelBase
from samplelib import *
class XSegModel(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, force_model_class_name='XSeg', **kwargs)
#override
def on_initialize_options(self):
ask_override = self.ask_override()
if not self.is_first_run() and ask_override:
if io.input_bool(f"Restart training?", False, help_message="Reset model weights and start training from scratch."):
self.set_iter(0)
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
if self.is_first_run():
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
if self.is_first_run() or ask_override:
self.ask_batch_size(4, range=[2,16])
#override
def on_initialize(self):
device_config = nn.getCurrentDeviceConfig()
self.model_data_format = "NCHW" if len(device_config.devices) != 0 and not self.is_debug() else "NHWC"
nn.initialize(data_format=self.model_data_format)
tf = nn.tf
device_config = nn.getCurrentDeviceConfig()
devices = device_config.devices
self.resolution = resolution = 256
self.face_type = {'h' : FaceType.HALF,
'mf' : FaceType.MID_FULL,
'f' : FaceType.FULL,
'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[ self.options['face_type'] ]
place_model_on_cpu = len(devices) == 0
models_opt_device = '/CPU:0' if place_model_on_cpu else '/GPU:0'
bgr_shape = nn.get4Dshape(resolution,resolution,3)
mask_shape = nn.get4Dshape(resolution,resolution,1)
# Initializing model classes
self.model = XSegNet(name='XSeg',
resolution=resolution,
load_weights=not self.is_first_run(),
weights_file_root=self.get_model_root_path(),
training=True,
place_model_on_cpu=place_model_on_cpu,
optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'),
data_format=nn.data_format)
if self.is_training:
# Adjust batch size for multiple GPU
gpu_count = max(1, len(devices) )
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
self.set_batch_size( gpu_count*bs_per_gpu)
# Compute losses per GPU
gpu_pred_list = []
gpu_losses = []
gpu_loss_gvs = []
for gpu_id in range(gpu_count):
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
with tf.device(f'/CPU:0'):
# slice on CPU, otherwise all batch data will be transfered to GPU first
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
gpu_input_t = self.model.input_t [batch_slice,:,:,:]
gpu_target_t = self.model.target_t [batch_slice,:,:,:]
# process model tensors
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t)
gpu_pred_list.append(gpu_pred_t)
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
gpu_losses += [gpu_loss]
gpu_loss_gvs += [ nn.gradients ( gpu_loss, self.model.get_weights() ) ]
# Average losses and gradients, and create optimizer update ops
with tf.device (models_opt_device):
pred = nn.concat(gpu_pred_list, 0)
loss = tf.reduce_mean(gpu_losses)
loss_gv_op = self.model.opt.get_update_op (nn.average_gv_list (gpu_loss_gvs))
# Initializing training and view functions
def train(input_np, target_np):
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np })
return l
self.train = train
def view(input_np):
return nn.tf_sess.run ( [pred], feed_dict={self.model.input_t :input_np})
self.view = view
# initializing sample generators
cpu_count = min(multiprocessing.cpu_count(), 8)
src_dst_generators_count = cpu_count // 2
src_generators_count = cpu_count // 2
dst_generators_count = cpu_count // 2
srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path],
debug=self.is_debug(),
batch_size=self.get_batch_size(),
resolution=resolution,
face_type=self.face_type,
generators_count=src_dst_generators_count,
data_format=nn.data_format)
src_generator = SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
generators_count=src_generators_count,
raise_on_no_data=False )
dst_generator = SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
generators_count=dst_generators_count,
raise_on_no_data=False )
self.set_training_data_generators ([srcdst_generator, src_generator, dst_generator])
#override
def get_model_filename_list(self):
return self.model.model_filename_list
#override
def onSave(self):
self.model.save_weights()
#override
def onTrainOneIter(self):
image_np, mask_np = self.generate_next_samples()[0]
loss = self.train (image_np, mask_np)
return ( ('loss', loss ), )
#override
def onGetPreview(self, samples):
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
srcdst_samples, src_samples, dst_samples = samples
image_np, mask_np = srcdst_samples
I, M, IM, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np,mask_np] + self.view (image_np) ) ]
M, IM, = [ np.repeat (x, (3,), -1) for x in [M, IM] ]
green_bg = np.tile( np.array([0,1,0], dtype=np.float32)[None,None,...], (self.resolution,self.resolution,1) )
result = []
st = []
for i in range(n_samples):
ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i])
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('XSeg training faces', np.concatenate (st, axis=0 )), ]
if len(src_samples) != 0:
src_np, = src_samples
D, DM, = [ np.clip(nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([src_np] + self.view (src_np) ) ]
DM, = [ np.repeat (x, (3,), -1) for x in [DM] ]
st = []
for i in range(n_samples):
ar = D[i], DM[i], D[i]*DM[i] + 0.5*D[i]*(1-DM[i]) + 0.5*green_bg*(1-DM[i])
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('XSeg src faces', np.concatenate (st, axis=0 )), ]
if len(dst_samples) != 0:
dst_np, = dst_samples
D, DM, = [ np.clip(nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([dst_np] + self.view (dst_np) ) ]
DM, = [ np.repeat (x, (3,), -1) for x in [DM] ]
st = []
for i in range(n_samples):
ar = D[i], DM[i], D[i]*DM[i] + 0.5*D[i]*(1-DM[i]) + 0.5*green_bg*(1-DM[i])
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('XSeg dst faces', np.concatenate (st, axis=0 )), ]
return result
Model = XSegModel