DeepFaceLab/facelib/TernausNet.py
Colombo 76ca79216e Upgraded to TF version 1.13.2
Removed the wait at first launch for most graphics cards.

Increased speed of training by 10-20%, but you have to retrain all models from scratch.

SAEHD:

added option 'use float16'
	Experimental option. Reduces the model size by half.
	Increases the speed of training.
	Decreases the accuracy of the model.
	The model may collapse or not train.
	Model may not learn the mask in large resolutions.

true_face_training option is replaced by
"True face power". 0.0000 .. 1.0
Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination.
Comparison - https://i.imgur.com/czScS9q.png
2020-01-25 21:58:19 +04:00

197 lines
7.3 KiB
Python

import os
import pickle
from functools import partial
from pathlib import Path
import cv2
import numpy as np
from core.interact import interact as io
from core.leras import nn
"""
Dataset used to train located in official DFL mega.nz folder
https://mega.nz/#F!b9MzCK4B!zEAG9txu7uaRUjXz9PtBqg
using https://github.com/ternaus/TernausNet
TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation
"""
class TernausNet(object):
VERSION = 1
def __init__ (self, name, resolution, face_type_str, load_weights=True, weights_file_root=None, training=False, place_model_on_cpu=False):
nn.initialize(data_format="NHWC")
tf = nn.tf
class Ternaus(nn.ModelBase):
def on_build(self, in_ch, ch):
self.features_0 = nn.Conv2D (in_ch, ch, kernel_size=3, padding='SAME')
self.blurpool_0 = nn.BlurPool (filt_size=3)
self.features_3 = nn.Conv2D (ch, ch*2, kernel_size=3, padding='SAME')
self.blurpool_3 = nn.BlurPool (filt_size=3)
self.features_6 = nn.Conv2D (ch*2, ch*4, kernel_size=3, padding='SAME')
self.features_8 = nn.Conv2D (ch*4, ch*4, kernel_size=3, padding='SAME')
self.blurpool_8 = nn.BlurPool (filt_size=3)
self.features_11 = nn.Conv2D (ch*4, ch*8, kernel_size=3, padding='SAME')
self.features_13 = nn.Conv2D (ch*8, ch*8, kernel_size=3, padding='SAME')
self.blurpool_13 = nn.BlurPool (filt_size=3)
self.features_16 = nn.Conv2D (ch*8, ch*8, kernel_size=3, padding='SAME')
self.features_18 = nn.Conv2D (ch*8, ch*8, kernel_size=3, padding='SAME')
self.blurpool_18 = nn.BlurPool (filt_size=3)
self.conv_center = nn.Conv2D (ch*8, ch*8, kernel_size=3, padding='SAME')
self.conv1_up = nn.Conv2DTranspose (ch*8, ch*4, kernel_size=3, padding='SAME')
self.conv1 = nn.Conv2D (ch*12, ch*8, kernel_size=3, padding='SAME')
self.conv2_up = nn.Conv2DTranspose (ch*8, ch*4, kernel_size=3, padding='SAME')
self.conv2 = nn.Conv2D (ch*12, ch*8, kernel_size=3, padding='SAME')
self.conv3_up = nn.Conv2DTranspose (ch*8, ch*2, kernel_size=3, padding='SAME')
self.conv3 = nn.Conv2D (ch*6, ch*4, kernel_size=3, padding='SAME')
self.conv4_up = nn.Conv2DTranspose (ch*4, ch, kernel_size=3, padding='SAME')
self.conv4 = nn.Conv2D (ch*3, ch*2, kernel_size=3, padding='SAME')
self.conv5_up = nn.Conv2DTranspose (ch*2, ch//2, kernel_size=3, padding='SAME')
self.conv5 = nn.Conv2D (ch//2+ch, ch, kernel_size=3, padding='SAME')
self.out_conv = nn.Conv2D (ch, 1, kernel_size=3, padding='SAME')
def forward(self, inp):
x, = inp
x = x0 = tf.nn.relu(self.features_0(x))
x = self.blurpool_0(x)
x = x1 = tf.nn.relu(self.features_3(x))
x = self.blurpool_3(x)
x = tf.nn.relu(self.features_6(x))
x = x2 = tf.nn.relu(self.features_8(x))
x = self.blurpool_8(x)
x = tf.nn.relu(self.features_11(x))
x = x3 = tf.nn.relu(self.features_13(x))
x = self.blurpool_13(x)
x = tf.nn.relu(self.features_16(x))
x = x4 = tf.nn.relu(self.features_18(x))
x = self.blurpool_18(x)
x = self.conv_center(x)
x = tf.nn.relu(self.conv1_up(x))
x = tf.concat( [x,x4], -1)
x = tf.nn.relu(self.conv1(x))
x = tf.nn.relu(self.conv2_up(x))
x = tf.concat( [x,x3], -1)
x = tf.nn.relu(self.conv2(x))
x = tf.nn.relu(self.conv3_up(x))
x = tf.concat( [x,x2], -1)
x = tf.nn.relu(self.conv3(x))
x = tf.nn.relu(self.conv4_up(x))
x = tf.concat( [x,x1], -1)
x = tf.nn.relu(self.conv4(x))
x = tf.nn.relu(self.conv5_up(x))
x = tf.concat( [x,x0], -1)
x = tf.nn.relu(self.conv5(x))
x = tf.nn.sigmoid(self.out_conv(x))
return x
if weights_file_root is not None:
weights_file_root = Path(weights_file_root)
else:
weights_file_root = Path(__file__).parent
self.weights_path = weights_file_root / ('%s_%d_%s.npy' % (name, resolution, face_type_str) )
e = tf.device('/CPU:0') if place_model_on_cpu else None
if e is not None: e.__enter__()
self.net = Ternaus(3, 64, name='Ternaus')
if load_weights:
self.net.load_weights (self.weights_path)
else:
self.net.init_weights()
if e is not None: e.__exit__(None,None,None)
self.net.build_for_run ( [(tf.float32, nn.get4Dshape (resolution,resolution,3) )] )
if training:
raise Exception("training not supported yet")
"""
if training:
try:
with open( Path(__file__).parent / 'vgg11_enc_weights.npy', 'rb' ) as f:
d = pickle.loads (f.read())
for i in [0,3,6,8,11,13,16,18]:
s = 'features.%d' % i
self.model.get_layer (s).set_weights ( d[s] )
except:
io.log_err("Unable to load VGG11 pretrained weights from vgg11_enc_weights.npy")
conv_weights_list = []
for layer in self.model.layers:
if 'CA.' in layer.name:
conv_weights_list += [layer.weights[0]] #Conv2D kernel_weights
CAInitializerMP ( conv_weights_list )
"""
"""
if training:
inp_t = Input ( (resolution, resolution, 3) )
real_t = Input ( (resolution, resolution, 1) )
out_t = self.model(inp_t)
loss = K.mean(10*K.binary_crossentropy(real_t,out_t) )
out_t_diff1 = out_t[:, 1:, :, :] - out_t[:, :-1, :, :]
out_t_diff2 = out_t[:, :, 1:, :] - out_t[:, :, :-1, :]
total_var_loss = K.mean( 0.1*K.abs(out_t_diff1), axis=[1, 2, 3] ) + K.mean( 0.1*K.abs(out_t_diff2), axis=[1, 2, 3] )
opt = Adam(lr=0.0001, beta_1=0.5, beta_2=0.999, tf_cpu_mode=2)
self.train_func = K.function ( [inp_t, real_t], [K.mean(loss)], opt.get_updates( [loss], self.model.trainable_weights) )
"""
def __enter__(self):
return self
def __exit__(self, exc_type=None, exc_value=None, traceback=None):
return False #pass exception between __enter__ and __exit__ to outter level
def save_weights(self):
self.net.save_weights (str(self.weights_path))
def train(self, inp, real):
loss, = self.train_func ([inp, real])
return loss
def extract (self, input_image):
input_shape_len = len(input_image.shape)
if input_shape_len == 3:
input_image = input_image[np.newaxis,...]
result = np.clip ( self.net.run([input_image]), 0, 1.0 )
result[result < 0.1] = 0 #get rid of noise
if input_shape_len == 3:
result = result[0]
return result