DeepFaceLab/core/leras/ops/__init__.py
Colombo 0c2e1c3944 SAEHD:
Maximum resolution is increased to 640.

‘hd’ archi is removed. ‘hd’ was experimental archi created to remove subpixel shake, but ‘lr_dropout’ and ‘disable random warping’ do that better.

‘uhd’ is renamed to ‘-u’
dfuhd and liaeuhd will be automatically renamed to df-u and liae-u in existing models.

Added new experimental archi (key -d) which doubles the resolution using the same computation cost.
It is mean same configs will be x2 faster, or for example you can set 448 resolution and it will train as 224.
Strongly recommended not to train from scratch and use pretrained models.

New archi naming:
'df' keeps more identity-preserved face.
'liae' can fix overly different face shapes.
'-u' increased likeness of the face.
'-d' (experimental) doubling the resolution using the same computation cost
Examples: df, liae, df-d, df-ud, liae-ud, ...

Improved GAN training (GAN_power option).  It was used for dst model, but actually we don’t need it for dst.
Instead, a second src GAN model with x2 smaller patch size was added, so the overall quality for hi-res models should be higher.

Added option ‘Uniform yaw distribution of samples (y/n)’:
	Helps to fix blurry side faces due to small amount of them in the faceset.

Quick96:
	Now based on df-ud archi and 20% faster.

XSeg trainer:
	Improved sample generator.
Now it randomly adds the background from other samples.
Result is reduced chance of random mask noise on the area outside the face.
Now you can specify ‘batch_size’ in range 2-16.

Reduced size of samples with applied XSeg mask. Thus size of packed samples with applied xseg mask is also reduced.
2020-06-19 09:45:55 +04:00

345 lines
No EOL
12 KiB
Python

import numpy as np
from core.leras import nn
tf = nn.tf
from tensorflow.python.ops import array_ops, random_ops, math_ops, sparse_ops, gradients
from tensorflow.python.framework import sparse_tensor
def tf_get_value(tensor):
return nn.tf_sess.run (tensor)
nn.tf_get_value = tf_get_value
def batch_set_value(tuples):
if len(tuples) != 0:
with nn.tf.device('/CPU:0'):
assign_ops = []
feed_dict = {}
for x, value in tuples:
if isinstance(value, nn.tf.Operation) or \
isinstance(value, nn.tf.Variable):
assign_ops.append(value)
else:
value = np.asarray(value, dtype=x.dtype.as_numpy_dtype)
assign_placeholder = nn.tf.placeholder( x.dtype.base_dtype, shape=[None]*value.ndim )
assign_op = nn.tf.assign (x, assign_placeholder )
assign_ops.append(assign_op)
feed_dict[assign_placeholder] = value
nn.tf_sess.run(assign_ops, feed_dict=feed_dict)
nn.batch_set_value = batch_set_value
def init_weights(weights):
ops = []
ca_tuples_w = []
ca_tuples = []
for w in weights:
initializer = w.initializer
for input in initializer.inputs:
if "_cai_" in input.name:
ca_tuples_w.append (w)
ca_tuples.append ( (w.shape.as_list(), w.dtype.as_numpy_dtype) )
break
else:
ops.append (initializer)
if len(ops) != 0:
nn.tf_sess.run (ops)
if len(ca_tuples) != 0:
nn.batch_set_value( [*zip(ca_tuples_w, nn.initializers.ca.generate_batch (ca_tuples))] )
nn.init_weights = init_weights
def tf_gradients ( loss, vars ):
grads = gradients.gradients(loss, vars, colocate_gradients_with_ops=True )
gv = [*zip(grads,vars)]
for g,v in gv:
if g is None:
raise Exception(f"Variable {v.name} is declared as trainable, but no tensors flow through it.")
return gv
nn.gradients = tf_gradients
def average_gv_list(grad_var_list, tf_device_string=None):
if len(grad_var_list) == 1:
return grad_var_list[0]
e = tf.device(tf_device_string) if tf_device_string is not None else None
if e is not None: e.__enter__()
result = []
for i, (gv) in enumerate(grad_var_list):
for j,(g,v) in enumerate(gv):
g = tf.expand_dims(g, 0)
if i == 0:
result += [ [[g], v] ]
else:
result[j][0] += [g]
for i,(gs,v) in enumerate(result):
result[i] = ( tf.reduce_mean( tf.concat (gs, 0), 0 ), v )
if e is not None: e.__exit__(None,None,None)
return result
nn.average_gv_list = average_gv_list
def average_tensor_list(tensors_list, tf_device_string=None):
if len(tensors_list) == 1:
return tensors_list[0]
e = tf.device(tf_device_string) if tf_device_string is not None else None
if e is not None: e.__enter__()
result = tf.reduce_mean(tf.concat ([tf.expand_dims(t, 0) for t in tensors_list], 0), 0)
if e is not None: e.__exit__(None,None,None)
return result
nn.average_tensor_list = average_tensor_list
def concat (tensors_list, axis):
"""
Better version.
"""
if len(tensors_list) == 1:
return tensors_list[0]
return tf.concat(tensors_list, axis)
nn.concat = concat
def gelu(x):
cdf = 0.5 * (1.0 + tf.nn.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
return x * cdf
nn.gelu = gelu
def upsample2d(x, size=2):
if nn.data_format == "NCHW":
b,c,h,w = x.shape.as_list()
x = tf.reshape (x, (-1,c,h,1,w,1) )
x = tf.tile(x, (1,1,1,size,1,size) )
x = tf.reshape (x, (-1,c,h*size,w*size) )
return x
else:
return tf.image.resize_nearest_neighbor(x, (x.shape[1]*size, x.shape[2]*size) )
nn.upsample2d = upsample2d
def resize2d_bilinear(x, size=2):
h = x.shape[nn.conv2d_spatial_axes[0]].value
w = x.shape[nn.conv2d_spatial_axes[1]].value
if nn.data_format == "NCHW":
x = tf.transpose(x, (0,2,3,1))
if size > 0:
new_size = (h*size,w*size)
else:
new_size = (h//-size,w//-size)
x = tf.image.resize(x, new_size, method=tf.image.ResizeMethod.BILINEAR)
if nn.data_format == "NCHW":
x = tf.transpose(x, (0,3,1,2))
return x
nn.resize2d_bilinear = resize2d_bilinear
def flatten(x):
if nn.data_format == "NHWC":
# match NCHW version in order to switch data_format without problems
x = tf.transpose(x, (0,3,1,2) )
return tf.reshape (x, (-1, np.prod(x.shape[1:])) )
nn.flatten = flatten
def max_pool(x, kernel_size=2, strides=2):
if nn.data_format == "NHWC":
return tf.nn.max_pool(x, [1,kernel_size,kernel_size,1], [1,strides,strides,1], 'SAME', data_format=nn.data_format)
else:
return tf.nn.max_pool(x, [1,1,kernel_size,kernel_size], [1,1,strides,strides], 'SAME', data_format=nn.data_format)
nn.max_pool = max_pool
def reshape_4D(x, w,h,c):
if nn.data_format == "NHWC":
# match NCHW version in order to switch data_format without problems
x = tf.reshape (x, (-1,c,h,w))
x = tf.transpose(x, (0,2,3,1) )
return x
else:
return tf.reshape (x, (-1,c,h,w))
nn.reshape_4D = reshape_4D
def random_binomial(shape, p=0.0, dtype=None, seed=None):
if dtype is None:
dtype=tf.float32
if seed is None:
seed = np.random.randint(10e6)
return array_ops.where(
random_ops.random_uniform(shape, dtype=tf.float16, seed=seed) < p,
array_ops.ones(shape, dtype=dtype), array_ops.zeros(shape, dtype=dtype))
nn.random_binomial = random_binomial
def gaussian_blur(input, radius=2.0):
def gaussian(x, mu, sigma):
return np.exp(-(float(x) - float(mu)) ** 2 / (2 * sigma ** 2))
def make_kernel(sigma):
kernel_size = max(3, int(2 * 2 * sigma + 1))
mean = np.floor(0.5 * kernel_size)
kernel_1d = np.array([gaussian(x, mean, sigma) for x in range(kernel_size)])
np_kernel = np.outer(kernel_1d, kernel_1d).astype(np.float32)
kernel = np_kernel / np.sum(np_kernel)
return kernel, kernel_size
gauss_kernel, kernel_size = make_kernel(radius)
padding = kernel_size//2
if padding != 0:
if nn.data_format == "NHWC":
padding = [ [0,0], [padding,padding], [padding,padding], [0,0] ]
else:
padding = [ [0,0], [0,0], [padding,padding], [padding,padding] ]
else:
padding = None
gauss_kernel = gauss_kernel[:,:,None,None]
x = input
k = tf.tile (gauss_kernel, (1,1,x.shape[nn.conv2d_ch_axis],1) )
x = tf.pad(x, padding )
x = tf.nn.depthwise_conv2d(x, k, strides=[1,1,1,1], padding='VALID', data_format=nn.data_format)
return x
nn.gaussian_blur = gaussian_blur
def style_loss(target, style, gaussian_blur_radius=0.0, loss_weight=1.0, step_size=1):
def sd(content, style, loss_weight):
content_nc = content.shape[ nn.conv2d_ch_axis ]
style_nc = style.shape[nn.conv2d_ch_axis]
if content_nc != style_nc:
raise Exception("style_loss() content_nc != style_nc")
c_mean, c_var = tf.nn.moments(content, axes=nn.conv2d_spatial_axes, keep_dims=True)
s_mean, s_var = tf.nn.moments(style, axes=nn.conv2d_spatial_axes, keep_dims=True)
c_std, s_std = tf.sqrt(c_var + 1e-5), tf.sqrt(s_var + 1e-5)
mean_loss = tf.reduce_sum(tf.square(c_mean-s_mean), axis=[1,2,3])
std_loss = tf.reduce_sum(tf.square(c_std-s_std), axis=[1,2,3])
return (mean_loss + std_loss) * ( loss_weight / content_nc.value )
if gaussian_blur_radius > 0.0:
target = gaussian_blur(target, gaussian_blur_radius)
style = gaussian_blur(style, gaussian_blur_radius)
return sd( target, style, loss_weight=loss_weight )
nn.style_loss = style_loss
def dssim(img1,img2, max_val, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03):
if img1.dtype != img2.dtype:
raise ValueError("img1.dtype != img2.dtype")
not_float32 = img1.dtype != tf.float32
if not_float32:
img_dtype = img1.dtype
img1 = tf.cast(img1, tf.float32)
img2 = tf.cast(img2, tf.float32)
kernel = np.arange(0, filter_size, dtype=np.float32)
kernel -= (filter_size - 1 ) / 2.0
kernel = kernel**2
kernel *= ( -0.5 / (filter_sigma**2) )
kernel = np.reshape (kernel, (1,-1)) + np.reshape(kernel, (-1,1) )
kernel = tf.constant ( np.reshape (kernel, (1,-1)), dtype=tf.float32 )
kernel = tf.nn.softmax(kernel)
kernel = tf.reshape (kernel, (filter_size, filter_size, 1, 1))
kernel = tf.tile (kernel, (1,1, img1.shape[ nn.conv2d_ch_axis ] ,1))
def reducer(x):
return tf.nn.depthwise_conv2d(x, kernel, strides=[1,1,1,1], padding='VALID', data_format=nn.data_format)
c1 = (k1 * max_val) ** 2
c2 = (k2 * max_val) ** 2
mean0 = reducer(img1)
mean1 = reducer(img2)
num0 = mean0 * mean1 * 2.0
den0 = tf.square(mean0) + tf.square(mean1)
luminance = (num0 + c1) / (den0 + c1)
num1 = reducer(img1 * img2) * 2.0
den1 = reducer(tf.square(img1) + tf.square(img2))
c2 *= 1.0 #compensation factor
cs = (num1 - num0 + c2) / (den1 - den0 + c2)
ssim_val = tf.reduce_mean(luminance * cs, axis=nn.conv2d_spatial_axes )
dssim = (1.0 - ssim_val ) / 2.0
if not_float32:
dssim = tf.cast(dssim, img_dtype)
return dssim
nn.dssim = dssim
def space_to_depth(x, size):
if nn.data_format == "NHWC":
# match NCHW version in order to switch data_format without problems
b,h,w,c = x.shape.as_list()
oh, ow = h // size, w // size
x = tf.reshape(x, (-1, size, oh, size, ow, c))
x = tf.transpose(x, (0, 2, 4, 1, 3, 5))
x = tf.reshape(x, (-1, oh, ow, size* size* c ))
return x
else:
return tf.space_to_depth(x, size, data_format=nn.data_format)
nn.space_to_depth = space_to_depth
def depth_to_space(x, size):
if nn.data_format == "NHWC":
# match NCHW version in order to switch data_format without problems
b,h,w,c = x.shape.as_list()
oh, ow = h * size, w * size
oc = c // (size * size)
x = tf.reshape(x, (-1, h, w, size, size, oc, ) )
x = tf.transpose(x, (0, 1, 3, 2, 4, 5))
x = tf.reshape(x, (-1, oh, ow, oc, ))
return x
else:
return tf.depth_to_space(x, size, data_format=nn.data_format)
nn.depth_to_space = depth_to_space
def rgb_to_lab(srgb):
srgb_pixels = tf.reshape(srgb, [-1, 3])
linear_mask = tf.cast(srgb_pixels <= 0.04045, dtype=tf.float32)
exponential_mask = tf.cast(srgb_pixels > 0.04045, dtype=tf.float32)
rgb_pixels = (srgb_pixels / 12.92 * linear_mask) + (((srgb_pixels + 0.055) / 1.055) ** 2.4) * exponential_mask
rgb_to_xyz = tf.constant([
# X Y Z
[0.412453, 0.212671, 0.019334], # R
[0.357580, 0.715160, 0.119193], # G
[0.180423, 0.072169, 0.950227], # B
])
xyz_pixels = tf.matmul(rgb_pixels, rgb_to_xyz)
xyz_normalized_pixels = tf.multiply(xyz_pixels, [1/0.950456, 1.0, 1/1.088754])
epsilon = 6/29
linear_mask = tf.cast(xyz_normalized_pixels <= (epsilon**3), dtype=tf.float32)
exponential_mask = tf.cast(xyz_normalized_pixels > (epsilon**3), dtype=tf.float32)
fxfyfz_pixels = (xyz_normalized_pixels / (3 * epsilon**2) + 4/29) * linear_mask + (xyz_normalized_pixels ** (1/3)) * exponential_mask
fxfyfz_to_lab = tf.constant([
# l a b
[ 0.0, 500.0, 0.0], # fx
[116.0, -500.0, 200.0], # fy
[ 0.0, 0.0, -200.0], # fz
])
lab_pixels = tf.matmul(fxfyfz_pixels, fxfyfz_to_lab) + tf.constant([-16.0, 0.0, 0.0])
return tf.reshape(lab_pixels, tf.shape(srgb))
nn.rgb_to_lab = rgb_to_lab
"""
def tf_suppress_lower_mean(t, eps=0.00001):
if t.shape.ndims != 1:
raise ValueError("tf_suppress_lower_mean: t rank must be 1")
t_mean_eps = tf.reduce_mean(t) - eps
q = tf.clip_by_value(t, t_mean_eps, tf.reduce_max(t) )
q = tf.clip_by_value(q-t_mean_eps, 0, eps)
q = q * (t/eps)
return q
"""