from core.leras import nn tf = nn.tf class AdaIN(nn.LayerBase): """ """ def __init__(self, in_ch, mlp_ch, kernel_initializer=None, dtype=None, **kwargs): self.in_ch = in_ch self.mlp_ch = mlp_ch self.kernel_initializer = kernel_initializer if dtype is None: dtype = nn.floatx self.dtype = dtype super().__init__(**kwargs) def build_weights(self): kernel_initializer = self.kernel_initializer if kernel_initializer is None: kernel_initializer = tf.initializers.he_normal() self.weight1 = tf.get_variable("weight1", (self.mlp_ch, self.in_ch), dtype=self.dtype, initializer=kernel_initializer) self.bias1 = tf.get_variable("bias1", (self.in_ch,), dtype=self.dtype, initializer=tf.initializers.zeros()) self.weight2 = tf.get_variable("weight2", (self.mlp_ch, self.in_ch), dtype=self.dtype, initializer=kernel_initializer) self.bias2 = tf.get_variable("bias2", (self.in_ch,), dtype=self.dtype, initializer=tf.initializers.zeros()) def get_weights(self): return [self.weight1, self.bias1, self.weight2, self.bias2] def forward(self, inputs): x, mlp = inputs gamma = tf.matmul(mlp, self.weight1) gamma = tf.add(gamma, tf.reshape(self.bias1, (1,self.in_ch) ) ) beta = tf.matmul(mlp, self.weight2) beta = tf.add(beta, tf.reshape(self.bias2, (1,self.in_ch) ) ) if nn.data_format == "NHWC": shape = (-1,1,1,self.in_ch) else: shape = (-1,self.in_ch,1,1) x_mean = tf.reduce_mean(x, axis=nn.conv2d_spatial_axes, keepdims=True ) x_std = tf.math.reduce_std(x, axis=nn.conv2d_spatial_axes, keepdims=True ) + 1e-5 x = (x - x_mean) / x_std x *= tf.reshape(gamma, shape) x += tf.reshape(beta, shape) return x nn.AdaIN = AdaIN