import time import cv2 import numpy as np from facelib import FaceType, LandmarksProcessor from joblib import SubprocessFunctionCaller from utils.pickle_utils import AntiPickler from .Converter import Converter class ConverterAvatar(Converter): #override def __init__(self, predictor_func, predictor_input_size=0): super().__init__(predictor_func, Converter.TYPE_FACE_AVATAR) self.predictor_input_size = predictor_input_size #dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ), np.zeros ( (predictor_input_size,predictor_input_size,1), dtype=np.float32 ) ) time.sleep(2) predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func) self.predictor_func_host = AntiPickler(predictor_func_host) self.predictor_func = predictor_func #overridable def on_host_tick(self): self.predictor_func_host.obj.process_messages() #override def cli_convert_face (self, img_bgr, img_face_landmarks, debug, avaperator_face_bgr=None, **kwargs): if debug: debugs = [img_bgr.copy()] img_size = img_bgr.shape[1], img_bgr.shape[0] img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks) img_face_mask_aaa = np.repeat(img_face_mask_a, 3, -1) output_size = self.predictor_input_size face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=FaceType.FULL) dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC ) predictor_input_dst_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size), cv2.INTER_CUBIC ) prd_inp_dst_face_mask_a = predictor_input_dst_face_mask_a_0[...,np.newaxis] prd_inp_avaperator_face_bgr = cv2.resize (avaperator_face_bgr, (self.predictor_input_size,self.predictor_input_size), cv2.INTER_CUBIC ) prd_face_bgr = self.predictor_func ( prd_inp_avaperator_face_bgr, prd_inp_dst_face_mask_a ) out_img = img_bgr.copy() out_img = cv2.warpAffine( prd_face_bgr, face_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) out_img = np.clip(out_img, 0.0, 1.0) if debug: debugs += [out_img.copy()] out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa) , 0, 1.0 ) if debug: debugs += [out_img.copy()] return debugs if debug else out_img