import os import sys import argparse from utils import Path_utils from utils import os_utils from pathlib import Path import numpy as np if sys.version_info[0] < 3 or (sys.version_info[0] == 3 and sys.version_info[1] < 2): raise Exception("This program requires at least Python 3.2") class fixPathAction(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, os.path.abspath(os.path.expanduser(values))) def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') if __name__ == "__main__": os_utils.set_process_lowest_prio() parser = argparse.ArgumentParser() parser.add_argument('--tf-suppress-std', action="store_true", dest="tf_suppress_std", default=False, help="Suppress tensorflow initialization info. May not works on some python builds such as anaconda python 3.6.4. If you can fix it, you are welcome.") subparsers = parser.add_subparsers() def process_extract(arguments): from mainscripts import Extractor Extractor.main ( input_dir=arguments.input_dir, output_dir=arguments.output_dir, debug=arguments.debug, face_type=arguments.face_type, detector=arguments.detector, multi_gpu=arguments.multi_gpu, cpu_only=arguments.cpu_only, manual_fix=arguments.manual_fix, manual_window_size=arguments.manual_window_size ) extract_parser = subparsers.add_parser( "extract", help="Extract the faces from a pictures.") extract_parser.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.") extract_parser.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the extracted files will be stored.") extract_parser.add_argument('--debug', action="store_true", dest="debug", default=False, help="Writes debug images to [output_dir]_debug\ directory.") extract_parser.add_argument('--face-type', dest="face_type", choices=['half_face', 'full_face', 'head', 'avatar', 'mark_only'], default='full_face', help="Default 'full_face'. Don't change this option, currently all models uses 'full_face'") extract_parser.add_argument('--detector', dest="detector", choices=['dlib','mt','manual'], default='dlib', help="Type of detector. Default 'dlib'. 'mt' (MTCNNv1) - faster, better, almost no jitter, perfect for gathering thousands faces for src-set. It is also good for dst-set, but can generate false faces in frames where main face not recognized! In this case for dst-set use either 'dlib' with '--manual-fix' or '--detector manual'. Manual detector suitable only for dst-set.") extract_parser.add_argument('--multi-gpu', action="store_true", dest="multi_gpu", default=False, help="Enables multi GPU.") extract_parser.add_argument('--manual-fix', action="store_true", dest="manual_fix", default=False, help="Enables manual extract only frames where faces were not recognized.") extract_parser.add_argument('--manual-window-size', type=int, dest="manual_window_size", default=0, help="Manual fix window size. Example: 1368. Default: frame size.") extract_parser.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Extract on CPU. Forces to use MT extractor.") extract_parser.set_defaults (func=process_extract) def process_sort(arguments): from mainscripts import Sorter Sorter.main (input_path=arguments.input_dir, sort_by_method=arguments.sort_by_method) sort_parser = subparsers.add_parser( "sort", help="Sort faces in a directory.") sort_parser.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.") sort_parser.add_argument('--by', required=True, dest="sort_by_method", choices=("blur", "face", "face-dissim", "face-yaw", "hist", "hist-dissim", "brightness", "hue", "black", "origname"), help="Method of sorting. 'origname' sort by original filename to recover original sequence." ) sort_parser.set_defaults (func=process_sort) def process_train(arguments): if 'DFL_TARGET_EPOCH' in os.environ.keys(): arguments.target_epoch = int ( os.environ['DFL_TARGET_EPOCH'] ) if 'DFL_BATCH_SIZE' in os.environ.keys(): arguments.batch_size = int ( os.environ['DFL_BATCH_SIZE'] ) from mainscripts import Trainer Trainer.main ( training_data_src_dir=arguments.training_data_src_dir, training_data_dst_dir=arguments.training_data_dst_dir, model_path=arguments.model_dir, model_name=arguments.model_name, debug = arguments.debug, #**options batch_size = arguments.batch_size, write_preview_history = arguments.write_preview_history, target_epoch = arguments.target_epoch, save_interval_min = arguments.save_interval_min, choose_worst_gpu = arguments.choose_worst_gpu, force_best_gpu_idx = arguments.force_best_gpu_idx, multi_gpu = arguments.multi_gpu, force_gpu_idxs = arguments.force_gpu_idxs, cpu_only = arguments.cpu_only ) train_parser = subparsers.add_parser( "train", help="Trainer") train_parser.add_argument('--training-data-src-dir', required=True, action=fixPathAction, dest="training_data_src_dir", help="Dir of src-set.") train_parser.add_argument('--training-data-dst-dir', required=True, action=fixPathAction, dest="training_data_dst_dir", help="Dir of dst-set.") train_parser.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Model dir.") train_parser.add_argument('--model', required=True, dest="model_name", choices=Path_utils.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Type of model") train_parser.add_argument('--write-preview-history', action="store_true", dest="write_preview_history", default=False, help="Enable write preview history.") train_parser.add_argument('--debug', action="store_true", dest="debug", default=False, help="Debug training.") train_parser.add_argument('--batch-size', type=int, dest="batch_size", default=0, help="Model batch size. Default - auto. Environment variable: ODFS_BATCH_SIZE.") train_parser.add_argument('--target-epoch', type=int, dest="target_epoch", default=0, help="Train until target epoch. Default - unlimited. Environment variable: ODFS_TARGET_EPOCH.") train_parser.add_argument('--save-interval-min', type=int, dest="save_interval_min", default=10, help="Save interval in minutes. Default 10.") train_parser.add_argument('--choose-worst-gpu', action="store_true", dest="choose_worst_gpu", default=False, help="Choose worst GPU instead of best.") train_parser.add_argument('--force-best-gpu-idx', type=int, dest="force_best_gpu_idx", default=-1, help="Force to choose this GPU idx as best(worst).") train_parser.add_argument('--multi-gpu', action="store_true", dest="multi_gpu", default=False, help="MultiGPU option. It will select only same best(worst) GPU models.") train_parser.add_argument('--force-gpu-idxs', type=str, dest="force_gpu_idxs", default=None, help="Override final GPU idxs. Example: 0,1,2.") train_parser.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Train on CPU.") train_parser.set_defaults (func=process_train) def process_convert(arguments): if arguments.ask_for_params: try: mode = int ( input ("Choose mode: (1) hist match, (2) hist match bw, (3) seamless (default), (4) seamless hist match : ") ) except: mode = 3 if mode == 1: arguments.mode = 'hist-match' elif mode == 2: arguments.mode = 'hist-match-bw' elif mode == 3: arguments.mode = 'seamless' elif mode == 4: arguments.mode = 'seamless-hist-match' if arguments.mode == 'hist-match' or arguments.mode == 'hist-match-bw': try: arguments.masked_hist_match = bool ( {"1":True,"0":False}[input("Masked hist match? [0 or 1] (default 1) : ").lower()] ) except: arguments.masked_hist_match = True if arguments.mode == 'hist-match' or arguments.mode == 'hist-match-bw' or arguments.mode == 'seamless-hist-match': try: hist_match_threshold = int ( input ("Hist match threshold. [0..255] (default - 255) : ") ) arguments.hist_match_threshold = hist_match_threshold except: arguments.hist_match_threshold = 255 try: arguments.use_predicted_mask = bool ( {"1":True,"0":False}[input("Use predicted mask? [0 or 1] (default 1) : ").lower()] ) except: arguments.use_predicted_mask = False try: arguments.erode_mask_modifier = int ( input ("Choose erode mask modifier [-200..200] (default 0) : ") ) except: arguments.erode_mask_modifier = 0 try: arguments.blur_mask_modifier = int ( input ("Choose blur mask modifier [-200..200] (default 0) : ") ) except: arguments.blur_mask_modifier = 0 if arguments.mode == 'seamless' or arguments.mode == 'seamless-hist-match': try: arguments.seamless_erode_mask_modifier = int ( input ("Choose seamless erode mask modifier [-100..100] (default 0) : ") ) except: arguments.seamless_erode_mask_modifier = 0 try: arguments.output_face_scale_modifier = int ( input ("Choose output face scale modifier [-50..50] (default 0) : ") ) except: arguments.output_face_scale_modifier = 0 try: arguments.transfercolor = bool ( {"1":True,"0":False}[input("Transfer color from dst face to converted final face? [0 or 1] (default 0) : ").lower()] ) except: arguments.transfercolor = False try: arguments.final_image_color_degrade_power = int ( input ("Degrade color power of final image [0..100] (default 0) : ") ) except: arguments.final_image_color_degrade_power = 0 try: arguments.alpha = bool ( {"1":True,"0":False}[input("Export png with alpha channel? [0..1] (default 0) : ").lower()] ) except: arguments.alpha = False arguments.erode_mask_modifier = np.clip ( int(arguments.erode_mask_modifier), -200, 200) arguments.blur_mask_modifier = np.clip ( int(arguments.blur_mask_modifier), -200, 200) arguments.seamless_erode_mask_modifier = np.clip ( int(arguments.seamless_erode_mask_modifier), -100, 100) arguments.output_face_scale_modifier = np.clip ( int(arguments.output_face_scale_modifier), -50, 50) from mainscripts import Converter Converter.main ( input_dir=arguments.input_dir, output_dir=arguments.output_dir, aligned_dir=arguments.aligned_dir, model_dir=arguments.model_dir, model_name=arguments.model_name, debug = arguments.debug, mode = arguments.mode, masked_hist_match = arguments.masked_hist_match, hist_match_threshold = arguments.hist_match_threshold, use_predicted_mask = arguments.use_predicted_mask, erode_mask_modifier = arguments.erode_mask_modifier, blur_mask_modifier = arguments.blur_mask_modifier, seamless_erode_mask_modifier = arguments.seamless_erode_mask_modifier, output_face_scale_modifier = arguments.output_face_scale_modifier, final_image_color_degrade_power = arguments.final_image_color_degrade_power, transfercolor = arguments.transfercolor, alpha = arguments.alpha, force_best_gpu_idx = arguments.force_best_gpu_idx, cpu_only = arguments.cpu_only ) convert_parser = subparsers.add_parser( "convert", help="Converter") convert_parser.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.") convert_parser.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the converted files will be stored.") convert_parser.add_argument('--aligned-dir', action=fixPathAction, dest="aligned_dir", help="Aligned directory. This is where the extracted of dst faces stored. Not used in AVATAR model.") convert_parser.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Model dir.") convert_parser.add_argument('--model', required=True, dest="model_name", choices=Path_utils.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Type of model") convert_parser.add_argument('--ask-for-params', action="store_true", dest="ask_for_params", default=False, help="Ask for params.") convert_parser.add_argument('--mode', dest="mode", choices=['seamless','hist-match', 'hist-match-bw','seamless-hist-match'], default='seamless', help="Face overlaying mode. Seriously affects result.") convert_parser.add_argument('--masked-hist-match', type=str2bool, nargs='?', const=True, default=True, help="True or False. Excludes background for hist match. Default - True.") convert_parser.add_argument('--hist-match-threshold', type=int, dest="hist_match_threshold", default=255, help="Hist match threshold. Decrease to hide artifacts of hist match. Valid range [0..255]. Default 255") convert_parser.add_argument('--use-predicted-mask', action="store_true", dest="use_predicted_mask", default=True, help="Use predicted mask by model. Default - True.") convert_parser.add_argument('--erode-mask-modifier', type=int, dest="erode_mask_modifier", default=0, help="Automatic erode mask modifier. Valid range [-200..200].") convert_parser.add_argument('--blur-mask-modifier', type=int, dest="blur_mask_modifier", default=0, help="Automatic blur mask modifier. Valid range [-200..200].") convert_parser.add_argument('--seamless-erode-mask-modifier', type=int, dest="seamless_erode_mask_modifier", default=0, help="Automatic seamless erode mask modifier. Valid range [-200..200].") convert_parser.add_argument('--output-face-scale-modifier', type=int, dest="output_face_scale_modifier", default=0, help="Output face scale modifier. Valid range [-50..50].") convert_parser.add_argument('--final-image-color-degrade-power', type=int, dest="final_image_color_degrade_power", default=0, help="Degrades colors of final image to hide face problems. Valid range [0..100].") convert_parser.add_argument('--transfercolor', action="store_true", dest="transfercolor", default=False, help="Transfer color from dst face to converted final face.") convert_parser.add_argument('--alpha', action="store_true", dest="alpha", default=False, help="Embeds alpha channel of face mask to final PNG. Used in manual composing video by editors such as Sony Vegas or After Effects.") convert_parser.add_argument('--debug', action="store_true", dest="debug", default=False, help="Debug converter.") convert_parser.add_argument('--force-best-gpu-idx', type=int, dest="force_best_gpu_idx", default=-1, help="Force to choose this GPU idx as best.") convert_parser.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Convert on CPU.") convert_parser.set_defaults(func=process_convert) def bad_args(arguments): parser.print_help() exit(0) parser.set_defaults(func=bad_args) arguments = parser.parse_args() if arguments.tf_suppress_std: os.environ['TF_SUPPRESS_STD'] = '1' arguments.func(arguments) print ("Done.") ''' import code code.interact(local=dict(globals(), **locals())) '''