import numpy as np import copy from facelib import FaceType from interact import interact as io class ConverterConfig(object): TYPE_NONE = 0 TYPE_MASKED = 1 TYPE_FACE_AVATAR = 2 #### TYPE_IMAGE = 3 TYPE_IMAGE_WITH_LANDMARKS = 4 def __init__(self, type=0): self.type = type self.superres_func = None self.sharpen_func = None self.fanseg_input_size = None self.fanseg_extract_func = None self.ebs_ct_func = None self.super_res_dict = {0:"None", 1:'RankSRGAN'} self.sharpen_dict = {0:"None", 1:'box', 2:'gaussian'} #default changeable params self.super_resolution_mode = 0 self.sharpen_mode = 0 self.sharpen_amount = 0 def copy(self): return copy.copy(self) #overridable def ask_settings(self): s = """Choose sharpen mode: \n""" for key in self.sharpen_dict.keys(): s += f"""({key}) {self.sharpen_dict[key]}\n""" s += f"""?:help Default: {list(self.sharpen_dict.keys())[0]} : """ self.sharpen_mode = io.input_int (s, 0, valid_list=self.sharpen_dict.keys(), help_message="Enhance details by applying sharpen filter.") if self.sharpen_mode != 0: self.sharpen_amount = np.clip ( io.input_int ("Choose sharpen amount [0..100] (skip:%d) : " % 10, 10), 0, 100 ) s = """Choose super resolution mode: \n""" for key in self.super_res_dict.keys(): s += f"""({key}) {self.super_res_dict[key]}\n""" s += f"""?:help Default: {list(self.super_res_dict.keys())[0]} : """ self.super_resolution_mode = io.input_int (s, 0, valid_list=self.super_res_dict.keys(), help_message="Enhance details by applying superresolution network.") def toggle_sharpen_mode(self): a = list( self.sharpen_dict.keys() ) self.sharpen_mode = a[ (a.index(self.sharpen_mode)+1) % len(a) ] def add_sharpen_amount(self, diff): self.sharpen_amount = np.clip ( self.sharpen_amount+diff, 0, 100) def toggle_super_resolution_mode(self): a = list( self.super_res_dict.keys() ) self.super_resolution_mode = a[ (a.index(self.super_resolution_mode)+1) % len(a) ] #overridable def __eq__(self, other): #check equality of changeable params if isinstance(other, ConverterConfig): return self.sharpen_mode == other.sharpen_mode and \ (self.sharpen_mode == 0 or ((self.sharpen_mode == other.sharpen_mode) and (self.sharpen_amount == other.sharpen_amount) )) and \ self.super_resolution_mode == other.super_resolution_mode return False #overridable def __str__(self): r = "" r += f"sharpen_mode : {self.sharpen_dict[self.sharpen_mode]}\n" if self.sharpen_mode != 0: r += f"sharpen_amount : {self.sharpen_amount}\n" r += f"super_resolution_mode : {self.super_res_dict[self.super_resolution_mode]}\n" return r mode_dict = {0:'original', 1:'overlay', 2:'hist-match', 3:'seamless2', 4:'seamless', 5:'seamless-hist-match', 6:'raw-rgb', 7:'raw-rgb-mask', 8:'raw-mask-only', 9:'raw-predicted-only'} full_face_mask_mode_dict = {1:'learned', 2:'dst', 3:'FAN-prd', 4:'FAN-dst', 5:'FAN-prd*FAN-dst', 6:'learned*FAN-prd*FAN-dst'} half_face_mask_mode_dict = {1:'learned', 2:'dst', 4:'FAN-dst', 7:'learned*FAN-dst'} ctm_dict = { 0: "None", 1:"rct", 2:"lct", 3:"mkl", 4:"mkl-m", 5:"idt", 6:"idt-m", 7:"ebs" } ctm_str_dict = {None:0, "rct":1, "lct":2, "mkl":3, "mkl-m":4, "idt":5, "idt-m":6, "ebs":7 } class ConverterConfigMasked(ConverterConfig): def __init__(self, face_type=FaceType.FULL, default_mode = 4, clip_hborder_mask_per = 0, ): super().__init__(type=ConverterConfig.TYPE_MASKED) self.face_type = face_type if self.face_type not in [FaceType.FULL, FaceType.HALF]: raise ValueError("ConverterConfigMasked supports only full or half face masks.") self.default_mode = default_mode self.clip_hborder_mask_per = clip_hborder_mask_per #default changeable params self.mode = 'overlay' self.masked_hist_match = True self.hist_match_threshold = 238 self.mask_mode = 1 self.erode_mask_modifier = 0 self.blur_mask_modifier = 0 self.motion_blur_power = 0 self.output_face_scale = 0 self.color_transfer_mode = 0 self.color_degrade_power = 0 self.export_mask_alpha = False def copy(self): return copy.copy(self) def set_mode (self, mode): self.mode = mode_dict.get (mode, mode_dict[self.default_mode] ) def toggle_masked_hist_match(self): if self.mode == 'hist-match' or self.mode == 'hist-match-bw': self.masked_hist_match = not self.masked_hist_match def add_hist_match_threshold(self, diff): if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match': self.hist_match_threshold = np.clip ( self.hist_match_threshold+diff , 0, 255) def toggle_mask_mode(self): if self.face_type == FaceType.FULL: a = list( full_face_mask_mode_dict.keys() ) else: a = list( half_face_mask_mode_dict.keys() ) self.mask_mode = a[ (a.index(self.mask_mode)+1) % len(a) ] def add_erode_mask_modifier(self, diff): self.erode_mask_modifier = np.clip ( self.erode_mask_modifier+diff , -400, 400) def add_blur_mask_modifier(self, diff): self.blur_mask_modifier = np.clip ( self.blur_mask_modifier+diff , -400, 400) def add_motion_blur_power(self, diff): self.motion_blur_power = np.clip ( self.motion_blur_power+diff, 0, 100) def add_output_face_scale(self, diff): self.output_face_scale = np.clip ( self.output_face_scale+diff , -50, 50) def toggle_color_transfer_mode(self): self.color_transfer_mode = (self.color_transfer_mode+1) % ( max(ctm_dict.keys())+1 ) def add_color_degrade_power(self, diff): self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100) def toggle_export_mask_alpha(self): self.export_mask_alpha = not self.export_mask_alpha def ask_settings(self): s = """Choose mode: \n""" for key in mode_dict.keys(): s += f"""({key}) {mode_dict[key]}\n""" s += f"""Default: {self.default_mode} : """ mode = io.input_int (s, self.default_mode) self.mode = mode_dict.get (mode, mode_dict[self.default_mode] ) if 'raw' not in self.mode: if self.mode == 'hist-match' or self.mode == 'hist-match-bw': self.masked_hist_match = io.input_bool("Masked hist match? (y/n skip:y) : ", True) if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match': self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold [0..255] (skip:255) : ", 255), 0, 255) if self.face_type == FaceType.FULL: s = """Choose mask mode: \n""" for key in full_face_mask_mode_dict.keys(): s += f"""({key}) {full_face_mask_mode_dict[key]}\n""" s += f"""?:help Default: 1 : """ self.mask_mode = io.input_int (s, 1, valid_list=full_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks.") else: s = """Choose mask mode: \n""" for key in half_face_mask_mode_dict.keys(): s += f"""({key}) {half_face_mask_mode_dict[key]}\n""" s += f"""?:help , Default: 1 : """ self.mask_mode = io.input_int (s, 1, valid_list=half_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images.") if 'raw' not in self.mode: self.erode_mask_modifier = np.clip ( io.input_int ("Choose erode mask modifier [-400..400] (skip:%d) : " % 0, 0), -400, 400) self.blur_mask_modifier = np.clip ( io.input_int ("Choose blur mask modifier [-400..400] (skip:%d) : " % 0, 0), -400, 400) self.motion_blur_power = np.clip ( io.input_int ("Choose motion blur power [0..100] (skip:%d) : " % (0), 0), 0, 100) self.output_face_scale = np.clip (io.input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0), -50, 50) if 'raw' not in self.mode: self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct/ebs skip:None ) : ", None, ctm_str_dict.keys() ) self.color_transfer_mode = ctm_str_dict[self.color_transfer_mode] super().ask_settings() if 'raw' not in self.mode: self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100) self.export_mask_alpha = io.input_bool("Export png with alpha channel of the mask? (y/n skip:n) : ", False) io.log_info ("") def __eq__(self, other): #check equality of changeable params if isinstance(other, ConverterConfigMasked): return super().__eq__(other) and \ self.mode == other.mode and \ self.masked_hist_match == other.masked_hist_match and \ self.hist_match_threshold == other.hist_match_threshold and \ self.mask_mode == other.mask_mode and \ self.erode_mask_modifier == other.erode_mask_modifier and \ self.blur_mask_modifier == other.blur_mask_modifier and \ self.motion_blur_power == other.motion_blur_power and \ self.output_face_scale == other.output_face_scale and \ self.color_transfer_mode == other.color_transfer_mode and \ self.color_degrade_power == other.color_degrade_power and \ self.export_mask_alpha == other.export_mask_alpha return False def __str__(self): r = ( """ConverterConfig:\n""" f"""Mode: {self.mode}\n""" ) if self.mode == 'hist-match' or self.mode == 'hist-match-bw': r += f"""masked_hist_match: {self.masked_hist_match}\n""" if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match': r += f"""hist_match_threshold: {self.hist_match_threshold}\n""" if self.face_type == FaceType.FULL: r += f"""mask_mode: { full_face_mask_mode_dict[self.mask_mode] }\n""" else: r += f"""mask_mode: { half_face_mask_mode_dict[self.mask_mode] }\n""" if 'raw' not in self.mode: r += (f"""erode_mask_modifier: {self.erode_mask_modifier}\n""" f"""blur_mask_modifier: {self.blur_mask_modifier}\n""" f"""motion_blur_power: {self.motion_blur_power}\n""") r += f"""output_face_scale: {self.output_face_scale}\n""" if 'raw' not in self.mode: r += f"""color_transfer_mode: { ctm_dict[self.color_transfer_mode]}\n""" r += super().__str__() if 'raw' not in self.mode: r += (f"""color_degrade_power: {self.color_degrade_power}\n""" f"""export_mask_alpha: {self.export_mask_alpha}\n""") r += "================" return r class ConverterConfigFaceAvatar(ConverterConfig): def __init__(self, temporal_face_count=0): super().__init__(type=ConverterConfig.TYPE_FACE_AVATAR) self.temporal_face_count = temporal_face_count #changeable params self.add_source_image = False def copy(self): return copy.copy(self) #override def ask_settings(self): self.add_source_image = io.input_bool("Add source image? (y/n ?:help skip:n) : ", False, help_message="Add source image for comparison.") super().ask_settings() def toggle_add_source_image(self): self.add_source_image = not self.add_source_image #override def __eq__(self, other): #check equality of changeable params if isinstance(other, ConverterConfigFaceAvatar): return super().__eq__(other) and \ self.add_source_image == other.add_source_image return False #override def __str__(self): return ("ConverterConfig: \n" f"add_source_image : {self.add_source_image}\n") + \ super().__str__() + "================"