import numpy as np def normalize_channels(img, target_channels): img_shape_len = len(img.shape) if img_shape_len == 2: h, w = img.shape c = 0 elif img_shape_len == 3: h, w, c = img.shape else: raise ValueError("normalize: incorrect image dimensions.") if c == 0 and target_channels > 0: img = img[...,np.newaxis] if c == 1 and target_channels > 1: img = np.repeat (img, target_channels, -1) if c > target_channels: img = img[...,0:target_channels] c = target_channels return img def overlay_alpha_image(img_target, img_source, xy_offset=(0,0) ): (h,w,c) = img_source.shape if c != 4: raise ValueError("overlay_alpha_image, img_source must have 4 channels") x1, x2 = xy_offset[0], xy_offset[0] + w y1, y2 = xy_offset[1], xy_offset[1] + h alpha_s = img_source[:, :, 3] / 255.0 alpha_l = 1.0 - alpha_s for c in range(0, 3): img_target[y1:y2, x1:x2, c] = (alpha_s * img_source[:, :, c] + alpha_l * img_target[y1:y2, x1:x2, c])