import multiprocessing import traceback import cv2 import numpy as np from facelib import LandmarksProcessor from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor, SampleType) from utils import iter_utils ''' arg output_sample_types = [ [SampleProcessor.TypeFlags, size, (optional) {} opts ] , ... ] ''' class SampleGeneratorFace(SampleGeneratorBase): def __init__ (self, samples_path, debug=False, batch_size=1, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, random_ct_samples_path=None, sample_process_options=SampleProcessor.Options(), output_sample_types=[], add_sample_idx=False, use_caching=False, generators_count=2, generators_random_seed=None, **kwargs): super().__init__(samples_path, debug, batch_size) self.sample_process_options = sample_process_options self.output_sample_types = output_sample_types self.add_sample_idx = add_sample_idx if sort_by_yaw_target_samples_path is not None: self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET elif sort_by_yaw: self.sample_type = SampleType.FACE_YAW_SORTED else: self.sample_type = SampleType.FACE if generators_random_seed is not None and len(generators_random_seed) != generators_count: raise ValueError("len(generators_random_seed) != generators_count") self.generators_random_seed = generators_random_seed samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path, use_caching=use_caching) np.random.shuffle(samples) self.samples_len = len(samples) if self.samples_len == 0: raise ValueError('No training data provided.') ct_samples = SampleLoader.load (SampleType.FACE, random_ct_samples_path) if random_ct_samples_path is not None else None self.random_ct_sample_chance = 100 if self.debug: self.generators_count = 1 self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (0, samples, ct_samples) )] else: self.generators_count = min ( generators_count, self.samples_len ) self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, samples[i::self.generators_count], ct_samples ) ) for i in range(self.generators_count) ] self.generator_counter = -1 #overridable def get_total_sample_count(self): return self.samples_len def __iter__(self): return self def __next__(self): self.generator_counter += 1 generator = self.generators[self.generator_counter % len(self.generators) ] return next(generator) def batch_func(self, param ): generator_id, samples, ct_samples = param if self.generators_random_seed is not None: np.random.seed ( self.generators_random_seed[generator_id] ) samples_len = len(samples) samples_idxs = [*range(samples_len)] ct_samples_len = len(ct_samples) if ct_samples is not None else 0 if self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: if all ( [ samples[idx] == None for idx in samples_idxs] ): raise ValueError('Not enough training data. Gather more faces!') if self.sample_type == SampleType.FACE: shuffle_idxs = [] elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: shuffle_idxs = [] shuffle_idxs_2D = [[]]*samples_len while True: batches = None for n_batch in range(self.batch_size): while True: sample = None if self.sample_type == SampleType.FACE: if len(shuffle_idxs) == 0: shuffle_idxs = samples_idxs.copy() np.random.shuffle(shuffle_idxs) idx = shuffle_idxs.pop() sample = samples[ idx ] elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: if len(shuffle_idxs) == 0: shuffle_idxs = samples_idxs.copy() np.random.shuffle(shuffle_idxs) idx = shuffle_idxs.pop() if samples[idx] != None: if len(shuffle_idxs_2D[idx]) == 0: a = shuffle_idxs_2D[idx] = [ *range(len(samples[idx])) ] np.random.shuffle (a) idx2 = shuffle_idxs_2D[idx].pop() sample = samples[idx][idx2] idx = (idx << 16) | (idx2 & 0xFFFF) if sample is not None: try: ct_sample=None if ct_samples is not None: if np.random.randint(100) < self.random_ct_sample_chance: ct_sample=ct_samples[np.random.randint(ct_samples_len)] x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug, ct_sample=ct_sample) except: raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) ) if type(x) != tuple and type(x) != list: raise Exception('SampleProcessor.process returns NOT tuple/list') if batches is None: batches = [ [] for _ in range(len(x)) ] if self.add_sample_idx: batches += [ [] ] i_sample_idx = len(batches)-1 for i in range(len(x)): batches[i].append ( x[i] ) if self.add_sample_idx: batches[i_sample_idx].append (idx) break yield [ np.array(batch) for batch in batches] @staticmethod def get_person_id_max_count(samples_path): return SampleLoader.get_person_id_max_count(samples_path)