import numpy as np def initialize_tensor_ops(nn): tf = nn.tf from tensorflow.python.ops import array_ops, random_ops, math_ops, sparse_ops, gradients from tensorflow.python.framework import sparse_tensor def tf_get_value(tensor): return nn.tf_sess.run (tensor) nn.tf_get_value = tf_get_value def tf_batch_set_value(tuples): if len(tuples) != 0: with nn.tf.device('/CPU:0'): assign_ops = [] feed_dict = {} for x, value in tuples: if isinstance(value, nn.tf.Operation): assign_ops.append(value) else: value = np.asarray(value, dtype=x.dtype.as_numpy_dtype) assign_placeholder = nn.tf.placeholder( x.dtype.base_dtype, shape=[None]*value.ndim ) assign_op = nn.tf.assign (x, assign_placeholder ) assign_ops.append(assign_op) feed_dict[assign_placeholder] = value nn.tf_sess.run(assign_ops, feed_dict=feed_dict) nn.tf_batch_set_value = tf_batch_set_value def tf_gradients ( loss, vars ): grads = gradients.gradients(loss, vars, colocate_gradients_with_ops=True ) gv = [*zip(grads,vars)] for g,v in gv: if g is None: raise Exception("No gradient for variable {v.name}") return gv nn.tf_gradients = tf_gradients def tf_average_gv_list(grad_var_list, tf_device_string=None): if len(grad_var_list) == 1: return grad_var_list[0] e = tf.device(tf_device_string) if tf_device_string is not None else None if e is not None: e.__enter__() result = [] for i, (gv) in enumerate(grad_var_list): for j,(g,v) in enumerate(gv): g = tf.expand_dims(g, 0) if i == 0: result += [ [[g], v] ] else: result[j][0] += [g] for i,(gs,v) in enumerate(result): result[i] = ( tf.reduce_mean( tf.concat (gs, 0), 0 ), v ) if e is not None: e.__exit__(None,None,None) return result nn.tf_average_gv_list = tf_average_gv_list def tf_average_tensor_list(tensors_list, tf_device_string=None): if len(tensors_list) == 1: return tensors_list[0] e = tf.device(tf_device_string) if tf_device_string is not None else None if e is not None: e.__enter__() result = tf.reduce_mean(tf.concat ([tf.expand_dims(t, 0) for t in tensors_list], 0), 0) if e is not None: e.__exit__(None,None,None) return result nn.tf_average_tensor_list = tf_average_tensor_list def tf_concat (tensors_list, axis): """ Better version. """ if len(tensors_list) == 1: return tensors_list[0] return tf.concat(tensors_list, axis) nn.tf_concat = tf_concat def tf_gelu(x): cdf = 0.5 * (1.0 + tf.nn.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) return x * cdf nn.tf_gelu = tf_gelu def tf_upsample2d(x, size=2): if nn.data_format == "NCHW": b,c,h,w = x.shape.as_list() x = tf.reshape (x, (-1,c,h,1,w,1) ) x = tf.tile(x, (1,1,1,size,1,size) ) x = tf.reshape (x, (-1,c,h*size,w*size) ) return x else: return tf.image.resize_nearest_neighbor(x, (x.shape[1]*size, x.shape[2]*size) ) nn.tf_upsample2d = tf_upsample2d def tf_upsample2d_bilinear(x, size=2): return tf.image.resize_images(x, (x.shape[1]*size, x.shape[2]*size) ) nn.tf_upsample2d_bilinear = tf_upsample2d_bilinear def tf_flatten(x): if nn.data_format == "NHWC": # match NCHW version in order to switch data_format without problems x = tf.transpose(x, (0,3,1,2) ) return tf.reshape (x, (-1, np.prod(x.shape[1:])) ) nn.tf_flatten = tf_flatten def tf_reshape_4D(x, w,h,c): if nn.data_format == "NHWC": # match NCHW version in order to switch data_format without problems x = tf.reshape (x, (-1,c,h,w)) x = tf.transpose(x, (0,2,3,1) ) return x else: return tf.reshape (x, (-1,c,h,w)) nn.tf_reshape_4D = tf_reshape_4D def tf_random_binomial(shape, p=0.0, dtype=None, seed=None): if dtype is None: dtype=tf.float32 if seed is None: seed = np.random.randint(10e6) return array_ops.where( random_ops.random_uniform(shape, dtype=tf.float16, seed=seed) < p, array_ops.ones(shape, dtype=dtype), array_ops.zeros(shape, dtype=dtype)) nn.tf_random_binomial = tf_random_binomial def tf_gaussian_blur(input, radius=2.0): def gaussian(x, mu, sigma): return np.exp(-(float(x) - float(mu)) ** 2 / (2 * sigma ** 2)) def make_kernel(sigma): kernel_size = max(3, int(2 * 2 * sigma + 1)) mean = np.floor(0.5 * kernel_size) kernel_1d = np.array([gaussian(x, mean, sigma) for x in range(kernel_size)]) np_kernel = np.outer(kernel_1d, kernel_1d).astype(np.float32) kernel = np_kernel / np.sum(np_kernel) return kernel, kernel_size gauss_kernel, kernel_size = make_kernel(radius) padding = kernel_size//2 if padding != 0: if nn.data_format == "NHWC": padding = [ [0,0], [padding,padding], [padding,padding], [0,0] ] else: padding = [ [0,0], [0,0], [padding,padding], [padding,padding] ] else: padding = None gauss_kernel = gauss_kernel[:,:,None,None] outputs = [] for i in range(input.shape[nn.conv2d_ch_axis]): x = input[:,:,:,i:i+1] if nn.data_format == "NHWC" \ else input[:,i:i+1,:,:] if padding is not None: x = tf.pad (x, padding) outputs += [ tf.nn.conv2d(x, tf.constant(gauss_kernel, dtype=input.dtype ), strides=[1,1,1,1], padding="VALID", data_format=nn.data_format) ] return tf.concat (outputs, axis=nn.conv2d_ch_axis) nn.tf_gaussian_blur = tf_gaussian_blur def tf_style_loss(target, style, gaussian_blur_radius=0.0, loss_weight=1.0, step_size=1): def sd(content, style, loss_weight): content_nc = content.shape[ nn.conv2d_ch_axis ] style_nc = style.shape[nn.conv2d_ch_axis] if content_nc != style_nc: raise Exception("style_loss() content_nc != style_nc") c_mean, c_var = tf.nn.moments(content, axes=nn.conv2d_spatial_axes, keep_dims=True) s_mean, s_var = tf.nn.moments(style, axes=nn.conv2d_spatial_axes, keep_dims=True) c_std, s_std = tf.sqrt(c_var + 1e-5), tf.sqrt(s_var + 1e-5) mean_loss = tf.reduce_sum(tf.square(c_mean-s_mean), axis=[1,2,3]) std_loss = tf.reduce_sum(tf.square(c_std-s_std), axis=[1,2,3]) return (mean_loss + std_loss) * ( loss_weight / content_nc.value ) if gaussian_blur_radius > 0.0: target = tf_gaussian_blur(target, gaussian_blur_radius) style = tf_gaussian_blur(style, gaussian_blur_radius) return sd( target, style, loss_weight=loss_weight ) nn.tf_style_loss = tf_style_loss def tf_dssim(img1,img2, max_val, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03): if img1.dtype != img2.dtype: raise ValueError("img1.dtype != img2.dtype") not_float32 = img1.dtype != tf.float32 if not_float32: img_dtype = img1.dtype img1 = tf.cast(img1, tf.float32) img2 = tf.cast(img2, tf.float32) kernel = np.arange(0, filter_size, dtype=np.float32) kernel -= (filter_size - 1 ) / 2.0 kernel = kernel**2 kernel *= ( -0.5 / (filter_sigma**2) ) kernel = np.reshape (kernel, (1,-1)) + np.reshape(kernel, (-1,1) ) kernel = tf.constant ( np.reshape (kernel, (1,-1)), dtype=tf.float32 ) kernel = tf.nn.softmax(kernel) kernel = tf.reshape (kernel, (filter_size, filter_size, 1, 1)) kernel = tf.tile (kernel, (1,1, img1.shape[ nn.conv2d_ch_axis ] ,1)) def reducer(x): return tf.nn.depthwise_conv2d(x, kernel, strides=[1,1,1,1], padding='VALID', data_format=nn.data_format) c1 = (k1 * max_val) ** 2 c2 = (k2 * max_val) ** 2 mean0 = reducer(img1) mean1 = reducer(img2) num0 = mean0 * mean1 * 2.0 den0 = tf.square(mean0) + tf.square(mean1) luminance = (num0 + c1) / (den0 + c1) num1 = reducer(img1 * img2) * 2.0 den1 = reducer(tf.square(img1) + tf.square(img2)) c2 *= 1.0 #compensation factor cs = (num1 - num0 + c2) / (den1 - den0 + c2) ssim_val = tf.reduce_mean(luminance * cs, axis=nn.conv2d_spatial_axes ) dssim = (1.0 - ssim_val ) / 2.0 if not_float32: dssim = tf.cast(dssim, img_dtype) return dssim nn.tf_dssim = tf_dssim def tf_space_to_depth(x, size): if nn.data_format == "NHWC": # match NCHW version in order to switch data_format without problems b,h,w,c = x.shape.as_list() oh, ow = h // size, w // size x = tf.reshape(x, (-1, size, oh, size, ow, c)) x = tf.transpose(x, (0, 2, 4, 1, 3, 5)) x = tf.reshape(x, (-1, oh, ow, size* size* c )) return x else: return tf.space_to_depth(x, size, data_format=nn.data_format) nn.tf_space_to_depth = tf_space_to_depth def tf_depth_to_space(x, size): if nn.data_format == "NHWC": # match NCHW version in order to switch data_format without problems b,h,w,c = x.shape.as_list() oh, ow = h * size, w * size oc = c // (size * size) x = tf.reshape(x, (-1, h, w, size, size, oc, ) ) x = tf.transpose(x, (0, 1, 3, 2, 4, 5)) x = tf.reshape(x, (-1, oh, ow, oc, )) return x else: return tf.depth_to_space(x, size, data_format=nn.data_format) nn.tf_depth_to_space = tf_depth_to_space def tf_rgb_to_lab(srgb): srgb_pixels = tf.reshape(srgb, [-1, 3]) linear_mask = tf.cast(srgb_pixels <= 0.04045, dtype=tf.float32) exponential_mask = tf.cast(srgb_pixels > 0.04045, dtype=tf.float32) rgb_pixels = (srgb_pixels / 12.92 * linear_mask) + (((srgb_pixels + 0.055) / 1.055) ** 2.4) * exponential_mask rgb_to_xyz = tf.constant([ # X Y Z [0.412453, 0.212671, 0.019334], # R [0.357580, 0.715160, 0.119193], # G [0.180423, 0.072169, 0.950227], # B ]) xyz_pixels = tf.matmul(rgb_pixels, rgb_to_xyz) xyz_normalized_pixels = tf.multiply(xyz_pixels, [1/0.950456, 1.0, 1/1.088754]) epsilon = 6/29 linear_mask = tf.cast(xyz_normalized_pixels <= (epsilon**3), dtype=tf.float32) exponential_mask = tf.cast(xyz_normalized_pixels > (epsilon**3), dtype=tf.float32) fxfyfz_pixels = (xyz_normalized_pixels / (3 * epsilon**2) + 4/29) * linear_mask + (xyz_normalized_pixels ** (1/3)) * exponential_mask fxfyfz_to_lab = tf.constant([ # l a b [ 0.0, 500.0, 0.0], # fx [116.0, -500.0, 200.0], # fy [ 0.0, 0.0, -200.0], # fz ]) lab_pixels = tf.matmul(fxfyfz_pixels, fxfyfz_to_lab) + tf.constant([-16.0, 0.0, 0.0]) return tf.reshape(lab_pixels, tf.shape(srgb)) nn.tf_rgb_to_lab = tf_rgb_to_lab def tf_suppress_lower_mean(t, eps=0.00001): if t.shape.ndims != 1: raise ValueError("tf_suppress_lower_mean: t rank must be 1") t_mean_eps = tf.reduce_mean(t) - eps q = tf.clip_by_value(t, t_mean_eps, tf.reduce_max(t) ) q = tf.clip_by_value(q-t_mean_eps, 0, eps) q = q * (t/eps) return q """ class GeLU(KL.Layer): Gaussian Error Linear Unit. A smoother version of ReLU generally used in the BERT or BERT architecture based models. Original paper: https://arxiv.org/abs/1606.08415 Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as the input. def __init__(self, approximate=True, **kwargs): super(GeLU, self).__init__(**kwargs) self.approximate = approximate self.supports_masking = True def call(self, inputs): cdf = 0.5 * (1.0 + K.tanh((np.sqrt(2 / np.pi) * (inputs + 0.044715 * K.pow(inputs, 3))))) return inputs * cdf def get_config(self): config = {'approximate': self.approximate} base_config = super(GeLU, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape nn.GeLU = GeLU """