from facelib import FaceType from facelib import LandmarksProcessor import cv2 import numpy as np from models import TrainingDataGeneratorBase from utils import image_utils from utils import random_utils from enum import IntEnum from models import TrainingDataType class TrainingDataGenerator(TrainingDataGeneratorBase): class SampleTypeFlags(IntEnum): SOURCE = 0x000001, WARPED = 0x000002, WARPED_TRANSFORMED = 0x000004, TRANSFORMED = 0x000008, HALF_FACE = 0x000010, FULL_FACE = 0x000020, HEAD_FACE = 0x000040, AVATAR_FACE = 0x000080, MARK_ONLY_FACE = 0x000100, MODE_BGR = 0x001000, #BGR MODE_G = 0x002000, #Grayscale MODE_GGG = 0x004000, #3xGrayscale MODE_M = 0x008000, #mask only MODE_BGR_SHUFFLE = 0x010000, #BGR shuffle MASK_FULL = 0x100000, MASK_EYES = 0x200000, #overrided def onInitialize(self, random_flip=False, normalize_tanh=False, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], output_sample_types=[], **kwargs): self.random_flip = random_flip self.normalize_tanh = normalize_tanh self.output_sample_types = output_sample_types self.rotation_range = rotation_range self.scale_range = scale_range self.tx_range = tx_range self.ty_range = ty_range #overrided def onProcessSample(self, sample, debug): source = sample.load_bgr() h,w,c = source.shape is_face_sample = self.trainingdatatype >= TrainingDataType.FACE_BEGIN and self.trainingdatatype <= TrainingDataType.FACE_END if debug and is_face_sample: LandmarksProcessor.draw_landmarks (source, sample.landmarks, (0, 1, 0)) params = image_utils.gen_warp_params(source, self.random_flip, rotation_range=self.rotation_range, scale_range=self.scale_range, tx_range=self.tx_range, ty_range=self.ty_range ) images = [[None]*3 for _ in range(4)] outputs = [] for t,size in self.output_sample_types: if t & self.SampleTypeFlags.SOURCE != 0: img_type = 0 elif t & self.SampleTypeFlags.WARPED != 0: img_type = 1 elif t & self.SampleTypeFlags.WARPED_TRANSFORMED != 0: img_type = 2 elif t & self.SampleTypeFlags.TRANSFORMED != 0: img_type = 3 else: raise ValueError ('expected SampleTypeFlags type') mask_type = 0 if t & self.SampleTypeFlags.MASK_FULL != 0: mask_type = 1 elif t & self.SampleTypeFlags.MASK_EYES != 0: mask_type = 2 if images[img_type][mask_type] is None: img = source if is_face_sample: if mask_type == 1: img = np.concatenate( (img, LandmarksProcessor.get_image_hull_mask (source, sample.landmarks) ), -1 ) elif mask_type == 2: mask = LandmarksProcessor.get_image_eye_mask (source, sample.landmarks) mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1) mask[mask > 0.0] = 1.0 img = np.concatenate( (img, mask ), -1 ) images[img_type][mask_type] = image_utils.warp_by_params (params, img, (img_type==1 or img_type==2), (img_type==2 or img_type==3), img_type != 0) img = images[img_type][mask_type] target_face_type = -1 if t & self.SampleTypeFlags.HALF_FACE != 0: target_face_type = FaceType.HALF elif t & self.SampleTypeFlags.FULL_FACE != 0: target_face_type = FaceType.FULL elif t & self.SampleTypeFlags.HEAD_FACE != 0: target_face_type = FaceType.HEAD elif t & self.SampleTypeFlags.AVATAR_FACE != 0: target_face_type = FaceType.AVATAR elif t & self.SampleTypeFlags.MARK_ONLY_FACE != 0: target_face_type = FaceType.MARK_ONLY if is_face_sample and target_face_type != -1 and target_face_type != FaceType.MARK_ONLY: if target_face_type > sample.face_type: raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) ) img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_LANCZOS4 ) else: img = cv2.resize( img, (size,size), cv2.INTER_LANCZOS4 ) img_bgr = img[...,0:3] img_mask = img[...,3:4] if t & self.SampleTypeFlags.MODE_BGR != 0: img = img elif t & self.SampleTypeFlags.MODE_BGR_SHUFFLE != 0: img_bgr = np.take (img_bgr, np.random.permutation(img_bgr.shape[-1]), axis=-1) img = np.concatenate ( (img_bgr,img_mask) , -1 ) elif t & self.SampleTypeFlags.MODE_G != 0: img = np.concatenate ( (np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1),img_mask) , -1 ) elif t & self.SampleTypeFlags.MODE_GGG != 0: img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1) elif is_face_sample and t & self.SampleTypeFlags.MODE_M != 0: if mask_type== 0: raise ValueError ('no mask mode defined') img = img_mask else: raise ValueError ('expected SampleTypeFlags mode') if not debug and self.normalize_tanh: img = img * 2.0 - 1.0 outputs.append ( img ) if debug: result = () for output in outputs: if output.shape[2] < 4: result += (output,) elif output.shape[2] == 4: result += (output[...,0:3]*output[...,3:4],) return result else: return outputs