import numpy as np from core.leras import nn tf = nn.tf class Conv2DTranspose(nn.LayerBase): """ use_wscale enables weight scale (equalized learning rate) if kernel_initializer is None, it will be forced to random_normal """ def __init__(self, in_ch, out_ch, kernel_size, strides=2, padding='SAME', use_bias=True, use_wscale=False, kernel_initializer=None, bias_initializer=None, trainable=True, dtype=None, **kwargs ): if not isinstance(strides, int): raise ValueError ("strides must be an int type") kernel_size = int(kernel_size) if dtype is None: dtype = nn.floatx self.in_ch = in_ch self.out_ch = out_ch self.kernel_size = kernel_size self.strides = strides self.padding = padding self.use_bias = use_bias self.use_wscale = use_wscale self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.trainable = trainable self.dtype = dtype super().__init__(**kwargs) def build_weights(self): kernel_initializer = self.kernel_initializer if self.use_wscale: gain = 1.0 if self.kernel_size == 1 else np.sqrt(2) fan_in = self.kernel_size*self.kernel_size*self.in_ch he_std = gain / np.sqrt(fan_in) # He init self.wscale = tf.constant(he_std, dtype=self.dtype ) if kernel_initializer is None: kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype) if kernel_initializer is None: kernel_initializer = nn.initializers.ca() self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.out_ch,self.in_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) if self.use_bias: bias_initializer = self.bias_initializer if bias_initializer is None: bias_initializer = tf.initializers.zeros(dtype=self.dtype) self.bias = tf.get_variable("bias", (self.out_ch,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable ) def get_weights(self): weights = [self.weight] if self.use_bias: weights += [self.bias] return weights def forward(self, x): shape = x.shape if nn.data_format == "NHWC": h,w,c = shape[1], shape[2], shape[3] output_shape = tf.stack ( (tf.shape(x)[0], self.deconv_length(w, self.strides, self.kernel_size, self.padding), self.deconv_length(h, self.strides, self.kernel_size, self.padding), self.out_ch) ) strides = [1,self.strides,self.strides,1] else: c,h,w = shape[1], shape[2], shape[3] output_shape = tf.stack ( (tf.shape(x)[0], self.out_ch, self.deconv_length(w, self.strides, self.kernel_size, self.padding), self.deconv_length(h, self.strides, self.kernel_size, self.padding), ) ) strides = [1,1,self.strides,self.strides] weight = self.weight if self.use_wscale: weight = weight * self.wscale x = tf.nn.conv2d_transpose(x, weight, output_shape, strides, padding=self.padding, data_format=nn.data_format) if self.use_bias: if nn.data_format == "NHWC": bias = tf.reshape (self.bias, (1,1,1,self.out_ch) ) else: bias = tf.reshape (self.bias, (1,self.out_ch,1,1) ) x = tf.add(x, bias) return x def __str__(self): r = f"{self.__class__.__name__} : in_ch:{self.in_ch} out_ch:{self.out_ch} " return r def deconv_length(self, dim_size, stride_size, kernel_size, padding): assert padding in {'SAME', 'VALID', 'FULL'} if dim_size is None: return None if padding == 'VALID': dim_size = dim_size * stride_size + max(kernel_size - stride_size, 0) elif padding == 'FULL': dim_size = dim_size * stride_size - (stride_size + kernel_size - 2) elif padding == 'SAME': dim_size = dim_size * stride_size return dim_size nn.Conv2DTranspose = Conv2DTranspose