import traceback import numpy as np import random import cv2 import multiprocessing from utils import iter_utils from samples import SampleType from samples import SampleProcessor from samples import SampleLoader from samples import SampleGeneratorBase ''' arg output_sample_types = [ [SampleProcessor.TypeFlags, size, (optional)random_sub_size] , ... ] ''' class SampleGeneratorFace(SampleGeneratorBase): def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, with_close_to_self=False, sample_process_options=SampleProcessor.Options(), output_sample_types=[], add_sample_idx=False, generators_count=2, **kwargs): super().__init__(samples_path, debug, batch_size) self.sample_process_options = sample_process_options self.output_sample_types = output_sample_types self.add_sample_idx = add_sample_idx if sort_by_yaw_target_samples_path is not None: self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET elif sort_by_yaw: self.sample_type = SampleType.FACE_YAW_SORTED elif with_close_to_self: self.sample_type = SampleType.FACE_WITH_CLOSE_TO_SELF else: self.sample_type = SampleType.FACE self.samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path) if self.debug: self.generators_count = 1 self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )] else: self.generators_count = min ( generators_count, len(self.samples) ) self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, i ) for i in range(self.generators_count) ] self.generators_sq = [ multiprocessing.Queue() for _ in range(self.generators_count) ] self.generator_counter = -1 def __iter__(self): return self def __next__(self): self.generator_counter += 1 generator = self.generators[self.generator_counter % len(self.generators) ] return next(generator) def repeat_sample_idxs(self, idxs): # [ idx, ... ] #send idxs list to all sub generators. for gen_sq in self.generators_sq: gen_sq.put (idxs) def batch_func(self, generator_id): gen_sq = self.generators_sq[generator_id] samples = self.samples samples_len = len(samples) samples_idxs = [ *range(samples_len) ] [generator_id::self.generators_count] repeat_samples_idxs = [] if len(samples_idxs) == 0: raise ValueError('No training data provided.') if self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: if all ( [ samples[idx] == None for idx in samples_idxs] ): raise ValueError('Not enough training data. Gather more faces!') if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF: shuffle_idxs = [] elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: shuffle_idxs = [] shuffle_idxs_2D = [[]]*samples_len while True: while not gen_sq.empty(): idxs = gen_sq.get() for idx in idxs: if idx in samples_idxs: repeat_samples_idxs.append(idx) batches = None for n_batch in range(self.batch_size): while True: sample = None if len(repeat_samples_idxs) > 0: idx = repeat_samples_idxs.pop() if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF: sample = samples[idx] elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: sample = samples[(idx >> 16) & 0xFFFF][idx & 0xFFFF] else: if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF: if len(shuffle_idxs) == 0: shuffle_idxs = samples_idxs.copy() np.random.shuffle(shuffle_idxs) idx = shuffle_idxs.pop() sample = samples[ idx ] elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: if len(shuffle_idxs) == 0: shuffle_idxs = samples_idxs.copy() np.random.shuffle(shuffle_idxs) idx = shuffle_idxs.pop() if samples[idx] != None: if len(shuffle_idxs_2D[idx]) == 0: shuffle_idxs_2D[idx] = random.sample( range(len(samples[idx])), len(samples[idx]) ) idx2 = shuffle_idxs_2D[idx].pop() sample = samples[idx][idx2] idx = (idx << 16) | (idx2 & 0xFFFF) if sample is not None: try: x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug) except: raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) ) if type(x) != tuple and type(x) != list: raise Exception('SampleProcessor.process returns NOT tuple/list') if batches is None: batches = [ [] for _ in range(len(x)) ] if self.add_sample_idx: batches += [ [] ] for i in range(len(x)): batches[i].append ( x[i] ) if self.add_sample_idx: batches[-1].append (idx) break yield [ np.array(batch) for batch in batches]