import os import sys import time import argparse from utils import Path_utils from utils import os_utils from pathlib import Path if sys.version_info[0] < 3 or (sys.version_info[0] == 3 and sys.version_info[1] < 2): raise Exception("This program requires at least Python 3.2") class fixPathAction(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, os.path.abspath(os.path.expanduser(values))) if __name__ == "__main__": os_utils.set_process_lowest_prio() parser = argparse.ArgumentParser() subparsers = parser.add_subparsers() def process_extract(arguments): from mainscripts import Extractor Extractor.main( arguments.input_dir, arguments.output_dir, arguments.debug, arguments.detector, arguments.manual_fix, arguments.manual_output_debug_fix, arguments.manual_window_size, face_type=arguments.face_type, device_args={'cpu_only' : arguments.cpu_only, 'multi_gpu' : arguments.multi_gpu, } ) extract_parser = subparsers.add_parser( "extract", help="Extract the faces from a pictures.") extract_parser.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.") extract_parser.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the extracted files will be stored.") extract_parser.add_argument('--debug', action="store_true", dest="debug", default=False, help="Writes debug images to [output_dir]_debug\ directory.") extract_parser.add_argument('--face-type', dest="face_type", choices=['half_face', 'full_face', 'head', 'avatar', 'mark_only'], default='full_face', help="Default 'full_face'. Don't change this option, currently all models uses 'full_face'") extract_parser.add_argument('--detector', dest="detector", choices=['dlib','mt','manual'], default='dlib', help="Type of detector. Default 'dlib'. 'mt' (MTCNNv1) - faster, better, almost no jitter, perfect for gathering thousands faces for src-set. It is also good for dst-set, but can generate false faces in frames where main face not recognized! In this case for dst-set use either 'dlib' with '--manual-fix' or '--detector manual'. Manual detector suitable only for dst-set.") extract_parser.add_argument('--multi-gpu', action="store_true", dest="multi_gpu", default=False, help="Enables multi GPU.") extract_parser.add_argument('--manual-fix', action="store_true", dest="manual_fix", default=False, help="Enables manual extract only frames where faces were not recognized.") extract_parser.add_argument('--manual-output-debug-fix', action="store_true", dest="manual_output_debug_fix", default=False, help="Performs manual reextract input-dir frames which were deleted from [output_dir]_debug\ dir.") extract_parser.add_argument('--manual-window-size', type=int, dest="manual_window_size", default=1368, help="Manual fix window size. Default: 1368.") extract_parser.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Extract on CPU. Forces to use MT extractor.") extract_parser.set_defaults (func=process_extract) def process_sort(arguments): from mainscripts import Sorter Sorter.main (input_path=arguments.input_dir, sort_by_method=arguments.sort_by_method) sort_parser = subparsers.add_parser( "sort", help="Sort faces in a directory.") sort_parser.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.") sort_parser.add_argument('--by', required=True, dest="sort_by_method", choices=("blur", "face", "face-dissim", "face-yaw", "face-pitch", "hist", "hist-dissim", "brightness", "hue", "black", "origname", "oneface", "final", "test"), help="Method of sorting. 'origname' sort by original filename to recover original sequence." ) sort_parser.set_defaults (func=process_sort) def process_util(arguments): from mainscripts import Util if arguments.convert_png_to_jpg: Util.convert_png_to_jpg_folder (input_path=arguments.input_dir) if arguments.add_landmarks_debug_images: Util.add_landmarks_debug_images (input_path=arguments.input_dir) util_parser = subparsers.add_parser( "util", help="Utilities.") util_parser.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.") util_parser.add_argument('--convert-png-to-jpg', action="store_true", dest="convert_png_to_jpg", default=False, help="Convert DeepFaceLAB PNG files to JPEG.") util_parser.add_argument('--add-landmarks-debug-images', action="store_true", dest="add_landmarks_debug_images", default=False, help="Add landmarks debug image for aligned faces.") util_parser.set_defaults (func=process_util) def process_train(arguments): args = {'training_data_src_dir' : arguments.training_data_src_dir, 'training_data_dst_dir' : arguments.training_data_dst_dir, 'model_path' : arguments.model_dir, 'model_name' : arguments.model_name, 'no_preview' : arguments.no_preview, 'debug' : arguments.debug, } device_args = {'cpu_only' : arguments.cpu_only, 'force_gpu_idx' : arguments.force_gpu_idx, } from mainscripts import Trainer Trainer.main(args, device_args) train_parser = subparsers.add_parser( "train", help="Trainer") train_parser.add_argument('--training-data-src-dir', required=True, action=fixPathAction, dest="training_data_src_dir", help="Dir of src-set.") train_parser.add_argument('--training-data-dst-dir', required=True, action=fixPathAction, dest="training_data_dst_dir", help="Dir of dst-set.") train_parser.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Model dir.") train_parser.add_argument('--model', required=True, dest="model_name", choices=Path_utils.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Type of model") train_parser.add_argument('--no-preview', action="store_true", dest="no_preview", default=False, help="Disable preview window.") train_parser.add_argument('--debug', action="store_true", dest="debug", default=False, help="Debug samples.") train_parser.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Train on CPU.") train_parser.add_argument('--force-gpu-idx', type=int, dest="force_gpu_idx", default=-1, help="Force to choose this GPU idx.") train_parser.set_defaults (func=process_train) def process_convert(arguments): args = {'input_dir' : arguments.input_dir, 'output_dir' : arguments.output_dir, 'aligned_dir' : arguments.aligned_dir, 'model_dir' : arguments.model_dir, 'model_name' : arguments.model_name, 'debug' : arguments.debug, } device_args = {'cpu_only' : arguments.cpu_only, 'force_gpu_idx' : arguments.force_gpu_idx, } from mainscripts import Converter Converter.main (args, device_args) convert_parser = subparsers.add_parser( "convert", help="Converter") convert_parser.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.") convert_parser.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the converted files will be stored.") convert_parser.add_argument('--aligned-dir', action=fixPathAction, dest="aligned_dir", help="Aligned directory. This is where the extracted of dst faces stored. Not used in AVATAR model.") convert_parser.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Model dir.") convert_parser.add_argument('--model', required=True, dest="model_name", choices=Path_utils.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Type of model") convert_parser.add_argument('--debug', action="store_true", dest="debug", default=False, help="Debug converter.") convert_parser.add_argument('--force-gpu-idx', type=int, dest="force_gpu_idx", default=-1, help="Force to choose this GPU idx.") convert_parser.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Convert on CPU.") convert_parser.set_defaults(func=process_convert) def bad_args(arguments): parser.print_help() exit(0) parser.set_defaults(func=bad_args) arguments = parser.parse_args() #os.environ['force_plaidML'] = '1' arguments.func(arguments) print ("Done.") """ Suppressing error with keras 2.2.4+ on python exit: Exception ignored in: > Traceback (most recent call last): File "D:\DeepFaceLab\_internal\bin\lib\site-packages\tensorflow\python\client\session.py", line 1413, in __del__ AttributeError: 'NoneType' object has no attribute 'raise_exception_on_not_ok_status' reproduce: https://github.com/keras-team/keras/issues/11751 ( still no solution ) """ outnull_file = open(os.devnull, 'w') os.dup2 ( outnull_file.fileno(), sys.stderr.fileno() ) sys.stderr = outnull_file ''' import code code.interact(local=dict(globals(), **locals())) '''