import numpy as np from nnlib import nnlib from models import ModelBase from facelib import FaceType from facelib import FANSegmentator from samples import * from interact import interact as io class Model(ModelBase): #override def onInitialize(self): exec(nnlib.import_all(), locals(), globals()) self.set_vram_batch_requirements( {1.5:4} ) self.resolution = 256 self.face_type = FaceType.FULL self.fan_seg = FANSegmentator(self.resolution, FaceType.toString(self.face_type), load_weights=not self.is_first_run(), weights_file_root=self.get_model_root_path() ) if self.is_training_mode: f = SampleProcessor.TypeFlags f_type = f.FACE_ALIGN_FULL #if self.face_type == FaceType.FULL else f.FACE_ALIGN_HALF self.set_training_data_generators ([ SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, normalize_tanh = True, scale_range=np.array([-0.05, 0.05])+self.src_scale_mod / 100.0 ), output_sample_types=[ [f.TRANSFORMED | f_type | f.MODE_BGR, self.resolution], [f.TRANSFORMED | f_type | f.MODE_M | f.FACE_MASK_FULL, self.resolution] ]), SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, normalize_tanh = True, scale_range=np.array([-0.05, 0.05])+self.src_scale_mod / 100.0 ), output_sample_types=[ [f.TRANSFORMED | f_type | f.MODE_BGR, self.resolution] ]) ]) #override def onSave(self): self.fan_seg.save_weights() #override def onTrainOneIter(self, generators_samples, generators_list): target_src, target_src_mask = generators_samples[0] loss = self.fan_seg.train_on_batch( [target_src], [target_src_mask] ) return ( ('loss', loss), ) #override def onGetPreview(self, sample): test_A = sample[0][0][0:4] #first 4 samples test_B = sample[1][0][0:4] #first 4 samples mAA = self.fan_seg.extract_from_bgr([test_A]) mBB = self.fan_seg.extract_from_bgr([test_B]) mAA = np.repeat ( mAA, (3,), -1) mBB = np.repeat ( mBB, (3,), -1) st = [] for i in range(0, len(test_A)): st.append ( np.concatenate ( ( test_A[i,:,:,0:3], mAA[i], test_A[i,:,:,0:3]*mAA[i], ), axis=1) ) st2 = [] for i in range(0, len(test_B)): st2.append ( np.concatenate ( ( test_B[i,:,:,0:3], mBB[i], test_B[i,:,:,0:3]*mBB[i], ), axis=1) ) return [ ('FANSegmentator', np.concatenate ( st, axis=0 ) ), ('never seen', np.concatenate ( st2, axis=0 ) ), ] def predictor_func (self, face): face_64_bgr = face[...,0:3] face_64_mask = np.expand_dims(face[...,3],-1) x, mx = self.src_view ( [ np.expand_dims(face_64_bgr,0) ] ) x, mx = x[0], mx[0] return np.concatenate ( (x,mx), -1 ) #override def get_converter(self): from converters import ConverterMasked return ConverterMasked(self.predictor_func, predictor_input_size=64, output_size=64, face_type=FaceType.HALF, base_erode_mask_modifier=100, base_blur_mask_modifier=100)