import operator from pathlib import Path import cv2 import numpy as np from nnlib import nnlib class S3FDExtractor(object): def __init__(self): exec( nnlib.import_all(), locals(), globals() ) model_path = Path(__file__).parent / "S3FD.h5" if not model_path.exists(): return None self.model = nnlib.keras.models.load_model ( str(model_path) ) def __enter__(self): return self def __exit__(self, exc_type=None, exc_value=None, traceback=None): return False #pass exception between __enter__ and __exit__ to outter level def extract (self, input_image, is_bgr=True, is_remove_intersects=False): if is_bgr: input_image = input_image[:,:,::-1] is_bgr = False (h, w, ch) = input_image.shape d = max(w, h) scale_to = 640 if d >= 1280 else d / 2 scale_to = max(64, scale_to) input_scale = d / scale_to input_image = cv2.resize (input_image, ( int(w/input_scale), int(h/input_scale) ), interpolation=cv2.INTER_LINEAR) olist = self.model.predict( np.expand_dims(input_image,0) ) detected_faces = [] for ltrb in self.refine (olist): l,t,r,b = [ x*input_scale for x in ltrb] bt = b-t if min(r-l,bt) < 40: #filtering faces < 40pix by any side continue b += bt*0.1 #enlarging bottom line a bit for 2DFAN-4, because default is not enough covering a chin detected_faces.append ( [int(x) for x in (l,t,r,b) ] ) #sort by largest area first detected_faces = [ [(l,t,r,b), (r-l)*(b-t) ] for (l,t,r,b) in detected_faces ] detected_faces = sorted(detected_faces, key=operator.itemgetter(1), reverse=True ) detected_faces = [ x[0] for x in detected_faces] if is_remove_intersects: for i in range( len(detected_faces)-1, 0, -1): l1,t1,r1,b1 = detected_faces[i] l0,t0,r0,b0 = detected_faces[i-1] dx = min(r0, r1) - max(l0, l1) dy = min(b0, b1) - max(t0, t1) if (dx>=0) and (dy>=0): detected_faces.pop(i) return detected_faces def refine(self, olist): bboxlist = [] for i, ((ocls,), (oreg,)) in enumerate ( zip ( olist[::2], olist[1::2] ) ): stride = 2**(i + 2) # 4,8,16,32,64,128 s_d2 = stride / 2 s_m4 = stride * 4 for hindex, windex in zip(*np.where(ocls > 0.05)): score = ocls[hindex, windex] loc = oreg[hindex, windex, :] priors = np.array([windex * stride + s_d2, hindex * stride + s_d2, s_m4, s_m4]) priors_2p = priors[2:] box = np.concatenate((priors[:2] + loc[:2] * 0.1 * priors_2p, priors_2p * np.exp(loc[2:] * 0.2)) ) box[:2] -= box[2:] / 2 box[2:] += box[:2] bboxlist.append([*box, score]) bboxlist = np.array(bboxlist) if len(bboxlist) == 0: bboxlist = np.zeros((1, 5)) bboxlist = bboxlist[self.refine_nms(bboxlist, 0.3), :] bboxlist = [ x[:-1].astype(np.int) for x in bboxlist if x[-1] >= 0.5] return bboxlist def refine_nms(self, dets, thresh): keep = list() if len(dets) == 0: return keep x_1, y_1, x_2, y_2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4] areas = (x_2 - x_1 + 1) * (y_2 - y_1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx_1, yy_1 = np.maximum(x_1[i], x_1[order[1:]]), np.maximum(y_1[i], y_1[order[1:]]) xx_2, yy_2 = np.minimum(x_2[i], x_2[order[1:]]), np.minimum(y_2[i], y_2[order[1:]]) width, height = np.maximum(0.0, xx_2 - xx_1 + 1), np.maximum(0.0, yy_2 - yy_1 + 1) ovr = width * height / (areas[i] + areas[order[1:]] - width * height) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep