import numpy as np import os import cv2 from pathlib import Path from nnlib import nnlib from interact import interact as io class FANSegmentator(object): def __init__ (self, resolution, face_type_str, load_weights=True, weights_file_root=None, training=False): exec( nnlib.import_all(), locals(), globals() ) self.model = FANSegmentator.BuildModel(resolution, ngf=32) if weights_file_root: weights_file_root = Path(weights_file_root) else: weights_file_root = Path(__file__).parent self.weights_path = weights_file_root / ('FANSeg_%d_%s.h5' % (resolution, face_type_str) ) if load_weights: self.model.load_weights (str(self.weights_path)) else: if training: conv_weights_list = [] for layer in self.model.layers: if type(layer) == keras.layers.Conv2D: conv_weights_list += [layer.weights[0]] # Conv2D kernel_weights CAInitializerMP(conv_weights_list) if training: self.model.compile(loss='mse', optimizer=Adam(tf_cpu_mode=2)) def __enter__(self): return self def __exit__(self, exc_type=None, exc_value=None, traceback=None): return False #pass exception between __enter__ and __exit__ to outter level def save_weights(self): self.model.save_weights (str(self.weights_path)) def train_on_batch(self, inp, outp): return self.model.train_on_batch(inp, outp) def extract_from_bgr (self, input_image): return np.clip ( (self.model.predict(input_image) + 1) / 2.0, 0, 1.0 ) @staticmethod def BuildModel ( resolution, ngf=64): exec( nnlib.import_all(), locals(), globals() ) inp = Input ( (resolution,resolution,3) ) x = inp x = FANSegmentator.EncFlow(ngf=ngf)(x) x = FANSegmentator.DecFlow(ngf=ngf)(x) model = Model(inp,x) return model @staticmethod def EncFlow(ngf=64, num_downs=4): exec( nnlib.import_all(), locals(), globals() ) use_bias = True def XNormalization(x): return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x) def downscale (dim): def func(x): return LeakyReLU(0.1)(XNormalization(Conv2D(dim, kernel_size=5, strides=2, padding='same', kernel_initializer=RandomNormal(0, 0.02))(x))) return func def func(input): x = input result = [] for i in range(num_downs): x = downscale ( min(ngf*(2**i), ngf*8) )(x) result += [x] return result return func @staticmethod def DecFlow(output_nc=1, ngf=64, activation='tanh'): exec (nnlib.import_all(), locals(), globals()) use_bias = True def XNormalization(x): return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x) def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None): return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint ) def upscale (dim): def func(x): return SubpixelUpscaler()( LeakyReLU(0.1)(XNormalization(Conv2D(dim, kernel_size=3, strides=1, padding='same', kernel_initializer=RandomNormal(0, 0.02))(x)))) return func def func(input): input_len = len(input) x = input[input_len-1] for i in range(input_len-1, -1, -1): x = upscale( min(ngf* (2**i) *4, ngf*8 *4 ) )(x) if i != 0: x = Concatenate(axis=3)([ input[i-1] , x]) return Conv2D(output_nc, 3, 1, 'same', activation=activation)(x) return func