import copy import multiprocessing import traceback import cv2 import numpy as np from core import mplib from core.joblib import SubprocessGenerator, ThisThreadGenerator from facelib import LandmarksProcessor from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor, SampleType) ''' arg output_sample_types = [ [SampleProcessor.TypeFlags, size, (optional) {} opts ] , ... ] ''' class SampleGeneratorFacePerson(SampleGeneratorBase): def __init__ (self, samples_path, debug=False, batch_size=1, sample_process_options=SampleProcessor.Options(), output_sample_types=[], person_id_mode=1, **kwargs): super().__init__(samples_path, debug, batch_size) self.sample_process_options = sample_process_options self.output_sample_types = output_sample_types self.person_id_mode = person_id_mode raise NotImplementedError("Currently SampleGeneratorFacePerson is not implemented.") samples_host = SampleLoader.mp_host (SampleType.FACE, self.samples_path) samples = samples_host.get_list() self.samples_len = len(samples) if self.samples_len == 0: raise ValueError('No training data provided.') unique_person_names = { sample.person_name for sample in samples } persons_name_idxs = { person_name : [] for person_name in unique_person_names } for i,sample in enumerate(samples): persons_name_idxs[sample.person_name].append (i) indexes2D = [ persons_name_idxs[person_name] for person_name in unique_person_names ] index2d_host = mplib.Index2DHost(indexes2D) if self.debug: self.generators_count = 1 self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),) )] else: self.generators_count = np.clip(multiprocessing.cpu_count(), 2, 4) self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),) ) for i in range(self.generators_count) ] self.generator_counter = -1 def __iter__(self): return self def __next__(self): self.generator_counter += 1 generator = self.generators[self.generator_counter % len(self.generators) ] return next(generator) def batch_func(self, param ): samples, index2d_host, = param bs = self.batch_size while True: person_idxs = index2d_host.get_1D(bs) samples_idxs = index2d_host.get_2D(person_idxs, 1) batches = None for n_batch in range(bs): person_id = person_idxs[n_batch] sample_idx = samples_idxs[n_batch][0] sample = samples[ sample_idx ] try: x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug) except: raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) ) if batches is None: batches = [ [] for _ in range(len(x)) ] batches += [ [] ] i_person_id = len(batches)-1 for i in range(len(x)): batches[i].append ( x[i] ) batches[i_person_id].append ( np.array([person_id]) ) yield [ np.array(batch) for batch in batches] @staticmethod def get_person_id_max_count(samples_path): return SampleLoader.get_person_id_max_count(samples_path) """ if self.person_id_mode==1: samples_len = len(samples) samples_idxs = [*range(samples_len)] shuffle_idxs = [] elif self.person_id_mode==2: persons_count = len(samples) person_idxs = [] for j in range(persons_count): for i in range(j+1,persons_count): person_idxs += [ [i,j] ] shuffle_person_idxs = [] samples_idxs = [None]*persons_count shuffle_idxs = [None]*persons_count for i in range(persons_count): samples_idxs[i] = [*range(len(samples[i]))] shuffle_idxs[i] = [] elif self.person_id_mode==3: persons_count = len(samples) person_idxs = [ *range(persons_count) ] shuffle_person_idxs = [] samples_idxs = [None]*persons_count shuffle_idxs = [None]*persons_count for i in range(persons_count): samples_idxs[i] = [*range(len(samples[i]))] shuffle_idxs[i] = [] if self.person_id_mode==2: if len(shuffle_person_idxs) == 0: shuffle_person_idxs = person_idxs.copy() np.random.shuffle(shuffle_person_idxs) person_ids = shuffle_person_idxs.pop() batches = None for n_batch in range(self.batch_size): if self.person_id_mode==1: if len(shuffle_idxs) == 0: shuffle_idxs = samples_idxs.copy() np.random.shuffle(shuffle_idxs) ### idx = shuffle_idxs.pop() sample = samples[ idx ] try: x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug) except: raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) ) if type(x) != tuple and type(x) != list: raise Exception('SampleProcessor.process returns NOT tuple/list') if batches is None: batches = [ [] for _ in range(len(x)) ] batches += [ [] ] i_person_id = len(batches)-1 for i in range(len(x)): batches[i].append ( x[i] ) batches[i_person_id].append ( np.array([sample.person_id]) ) elif self.person_id_mode==2: person_id1, person_id2 = person_ids if len(shuffle_idxs[person_id1]) == 0: shuffle_idxs[person_id1] = samples_idxs[person_id1].copy() np.random.shuffle(shuffle_idxs[person_id1]) idx = shuffle_idxs[person_id1].pop() sample1 = samples[person_id1][idx] if len(shuffle_idxs[person_id2]) == 0: shuffle_idxs[person_id2] = samples_idxs[person_id2].copy() np.random.shuffle(shuffle_idxs[person_id2]) idx = shuffle_idxs[person_id2].pop() sample2 = samples[person_id2][idx] if sample1 is not None and sample2 is not None: try: x1, = SampleProcessor.process ([sample1], self.sample_process_options, self.output_sample_types, self.debug) except: raise Exception ("Exception occured in sample %s. Error: %s" % (sample1.filename, traceback.format_exc() ) ) try: x2, = SampleProcessor.process ([sample2], self.sample_process_options, self.output_sample_types, self.debug) except: raise Exception ("Exception occured in sample %s. Error: %s" % (sample2.filename, traceback.format_exc() ) ) x1_len = len(x1) if batches is None: batches = [ [] for _ in range(x1_len) ] batches += [ [] ] i_person_id1 = len(batches)-1 batches += [ [] for _ in range(len(x2)) ] batches += [ [] ] i_person_id2 = len(batches)-1 for i in range(x1_len): batches[i].append ( x1[i] ) for i in range(len(x2)): batches[x1_len+1+i].append ( x2[i] ) batches[i_person_id1].append ( np.array([sample1.person_id]) ) batches[i_person_id2].append ( np.array([sample2.person_id]) ) elif self.person_id_mode==3: if len(shuffle_person_idxs) == 0: shuffle_person_idxs = person_idxs.copy() np.random.shuffle(shuffle_person_idxs) person_id = shuffle_person_idxs.pop() if len(shuffle_idxs[person_id]) == 0: shuffle_idxs[person_id] = samples_idxs[person_id].copy() np.random.shuffle(shuffle_idxs[person_id]) idx = shuffle_idxs[person_id].pop() sample1 = samples[person_id][idx] if len(shuffle_idxs[person_id]) == 0: shuffle_idxs[person_id] = samples_idxs[person_id].copy() np.random.shuffle(shuffle_idxs[person_id]) idx = shuffle_idxs[person_id].pop() sample2 = samples[person_id][idx] if sample1 is not None and sample2 is not None: try: x1, = SampleProcessor.process ([sample1], self.sample_process_options, self.output_sample_types, self.debug) except: raise Exception ("Exception occured in sample %s. Error: %s" % (sample1.filename, traceback.format_exc() ) ) try: x2, = SampleProcessor.process ([sample2], self.sample_process_options, self.output_sample_types, self.debug) except: raise Exception ("Exception occured in sample %s. Error: %s" % (sample2.filename, traceback.format_exc() ) ) x1_len = len(x1) if batches is None: batches = [ [] for _ in range(x1_len) ] batches += [ [] ] i_person_id1 = len(batches)-1 batches += [ [] for _ in range(len(x2)) ] batches += [ [] ] i_person_id2 = len(batches)-1 for i in range(x1_len): batches[i].append ( x1[i] ) for i in range(len(x2)): batches[x1_len+1+i].append ( x2[i] ) batches[i_person_id1].append ( np.array([sample1.person_id]) ) batches[i_person_id2].append ( np.array([sample2.person_id]) ) """