import numpy as np from core.leras import nn from tensorflow.python.ops import control_flow_ops, state_ops tf = nn.tf class AdaBelief(nn.OptimizerBase): def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, lr_dropout=1.0, lr_cos=0, clipnorm=0.0, name=None, **kwargs): super().__init__(name=name) if name is None: raise ValueError('name must be defined.') self.lr = lr self.beta_1 = beta_1 self.beta_2 = beta_2 self.lr_dropout = lr_dropout self.lr_cos = lr_cos self.clipnorm = clipnorm with tf.device('/CPU:0') : with tf.variable_scope(self.name): self.iterations = tf.Variable(0, dtype=tf.int64, name='iters') self.ms_dict = {} self.vs_dict = {} self.lr_rnds_dict = {} def get_weights(self): return [self.iterations] + list(self.ms_dict.values()) + list(self.vs_dict.values()) def initialize_variables(self, trainable_weights, vars_on_cpu=True, lr_dropout_on_cpu=False): # Initialize here all trainable variables used in training e = tf.device('/CPU:0') if vars_on_cpu else None if e: e.__enter__() with tf.variable_scope(self.name): ms = { v.name : tf.get_variable ( f'ms_{v.name}'.replace(':','_'), v.shape, dtype=v.dtype, initializer=tf.initializers.constant(0.0), trainable=False) for v in trainable_weights } vs = { v.name : tf.get_variable ( f'vs_{v.name}'.replace(':','_'), v.shape, dtype=v.dtype, initializer=tf.initializers.constant(0.0), trainable=False) for v in trainable_weights } self.ms_dict.update (ms) self.vs_dict.update (vs) if self.lr_dropout != 1.0: e = tf.device('/CPU:0') if lr_dropout_on_cpu else None if e: e.__enter__() lr_rnds = [ nn.random_binomial( v.shape, p=self.lr_dropout, dtype=v.dtype) for v in trainable_weights ] if e: e.__exit__(None, None, None) self.lr_rnds_dict.update ( { v.name : rnd for v,rnd in zip(trainable_weights,lr_rnds) } ) if e: e.__exit__(None, None, None) def get_update_op(self, grads_vars): updates = [] if self.clipnorm > 0.0: norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars])) updates += [ state_ops.assign_add( self.iterations, 1) ] for i, (g,v) in enumerate(grads_vars): if self.clipnorm > 0.0: g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) ) ms = self.ms_dict[ v.name ] vs = self.vs_dict[ v.name ] m_t = self.beta_1*ms + (1.0-self.beta_1) * g v_t = self.beta_2*vs + (1.0-self.beta_2) * tf.square(g-m_t) lr = tf.constant(self.lr, g.dtype) if self.lr_cos != 0: lr *= (tf.cos( tf.cast(self.iterations, g.dtype) * (2*3.1415926535/ float(self.lr_cos) ) ) + 1.0) / 2.0 v_diff = - lr * m_t / (tf.sqrt(v_t) + np.finfo( g.dtype.as_numpy_dtype ).resolution ) if self.lr_dropout != 1.0: lr_rnd = self.lr_rnds_dict[v.name] v_diff *= lr_rnd new_v = v + v_diff updates.append (state_ops.assign(ms, m_t)) updates.append (state_ops.assign(vs, v_t)) updates.append (state_ops.assign(v, new_v)) return control_flow_ops.group ( *updates, name=self.name+'_updates') nn.AdaBelief = AdaBelief