import numpy as np from core.leras import nn tf = nn.tf from tensorflow.python.ops import array_ops, random_ops, math_ops, sparse_ops, gradients from tensorflow.python.framework import sparse_tensor def tf_get_value(tensor): return nn.tf_sess.run (tensor) nn.tf_get_value = tf_get_value def batch_set_value(tuples): if len(tuples) != 0: with nn.tf.device('/CPU:0'): assign_ops = [] feed_dict = {} for x, value in tuples: if isinstance(value, nn.tf.Operation) or \ isinstance(value, nn.tf.Variable): assign_ops.append(value) else: value = np.asarray(value, dtype=x.dtype.as_numpy_dtype) assign_placeholder = nn.tf.placeholder( x.dtype.base_dtype, shape=[None]*value.ndim ) assign_op = nn.tf.assign (x, assign_placeholder ) assign_ops.append(assign_op) feed_dict[assign_placeholder] = value nn.tf_sess.run(assign_ops, feed_dict=feed_dict) nn.batch_set_value = batch_set_value def init_weights(weights): ops = [] ca_tuples_w = [] ca_tuples = [] for w in weights: initializer = w.initializer for input in initializer.inputs: if "_cai_" in input.name: ca_tuples_w.append (w) ca_tuples.append ( (w.shape.as_list(), w.dtype.as_numpy_dtype) ) break else: ops.append (initializer) if len(ops) != 0: nn.tf_sess.run (ops) if len(ca_tuples) != 0: nn.batch_set_value( [*zip(ca_tuples_w, nn.initializers.ca.generate_batch (ca_tuples))] ) nn.init_weights = init_weights def tf_gradients ( loss, vars ): grads = gradients.gradients(loss, vars, colocate_gradients_with_ops=True ) gv = [*zip(grads,vars)] for g,v in gv: if g is None: raise Exception(f"Variable {v.name} is declared as trainable, but no tensors flow through it.") return gv nn.gradients = tf_gradients def average_gv_list(grad_var_list, tf_device_string=None): if len(grad_var_list) == 1: return grad_var_list[0] e = tf.device(tf_device_string) if tf_device_string is not None else None if e is not None: e.__enter__() result = [] for i, (gv) in enumerate(grad_var_list): for j,(g,v) in enumerate(gv): g = tf.expand_dims(g, 0) if i == 0: result += [ [[g], v] ] else: result[j][0] += [g] for i,(gs,v) in enumerate(result): result[i] = ( tf.reduce_mean( tf.concat (gs, 0), 0 ), v ) if e is not None: e.__exit__(None,None,None) return result nn.average_gv_list = average_gv_list def average_tensor_list(tensors_list, tf_device_string=None): if len(tensors_list) == 1: return tensors_list[0] e = tf.device(tf_device_string) if tf_device_string is not None else None if e is not None: e.__enter__() result = tf.reduce_mean(tf.concat ([tf.expand_dims(t, 0) for t in tensors_list], 0), 0) if e is not None: e.__exit__(None,None,None) return result nn.average_tensor_list = average_tensor_list def concat (tensors_list, axis): """ Better version. """ if len(tensors_list) == 1: return tensors_list[0] return tf.concat(tensors_list, axis) nn.concat = concat def gelu(x): cdf = 0.5 * (1.0 + tf.nn.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) return x * cdf nn.gelu = gelu def upsample2d(x, size=2): if nn.data_format == "NCHW": x = tf.transpose(x, (0,2,3,1)) x = tf.image.resize_nearest_neighbor(x, (x.shape[1]*size, x.shape[2]*size) ) x = tf.transpose(x, (0,3,1,2)) # b,c,h,w = x.shape.as_list() # x = tf.reshape (x, (-1,c,h,1,w,1) ) # x = tf.tile(x, (1,1,1,size,1,size) ) # x = tf.reshape (x, (-1,c,h*size,w*size) ) return x else: return tf.image.resize_nearest_neighbor(x, (x.shape[1]*size, x.shape[2]*size) ) nn.upsample2d = upsample2d def resize2d_bilinear(x, size=2): h = x.shape[nn.conv2d_spatial_axes[0]].value w = x.shape[nn.conv2d_spatial_axes[1]].value if nn.data_format == "NCHW": x = tf.transpose(x, (0,2,3,1)) if size > 0: new_size = (h*size,w*size) else: new_size = (h//-size,w//-size) x = tf.image.resize(x, new_size, method=tf.image.ResizeMethod.BILINEAR) if nn.data_format == "NCHW": x = tf.transpose(x, (0,3,1,2)) return x nn.resize2d_bilinear = resize2d_bilinear def resize2d_nearest(x, size=2): if size in [-1,0,1]: return x if size > 0: raise Exception("") else: if nn.data_format == "NCHW": x = x[:,:,::-size,::-size] else: x = x[:,::-size,::-size,:] return x h = x.shape[nn.conv2d_spatial_axes[0]].value w = x.shape[nn.conv2d_spatial_axes[1]].value if nn.data_format == "NCHW": x = tf.transpose(x, (0,2,3,1)) if size > 0: new_size = (h*size,w*size) else: new_size = (h//-size,w//-size) x = tf.image.resize(x, new_size, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) if nn.data_format == "NCHW": x = tf.transpose(x, (0,3,1,2)) return x nn.resize2d_nearest = resize2d_nearest def flatten(x): if nn.data_format == "NHWC": # match NCHW version in order to switch data_format without problems x = tf.transpose(x, (0,3,1,2) ) return tf.reshape (x, (-1, np.prod(x.shape[1:])) ) nn.flatten = flatten def max_pool(x, kernel_size=2, strides=2): if nn.data_format == "NHWC": return tf.nn.max_pool(x, [1,kernel_size,kernel_size,1], [1,strides,strides,1], 'SAME', data_format=nn.data_format) else: return tf.nn.max_pool(x, [1,1,kernel_size,kernel_size], [1,1,strides,strides], 'SAME', data_format=nn.data_format) nn.max_pool = max_pool def reshape_4D(x, w,h,c): if nn.data_format == "NHWC": # match NCHW version in order to switch data_format without problems x = tf.reshape (x, (-1,c,h,w)) x = tf.transpose(x, (0,2,3,1) ) return x else: return tf.reshape (x, (-1,c,h,w)) nn.reshape_4D = reshape_4D def random_binomial(shape, p=0.0, dtype=None, seed=None): if dtype is None: dtype=tf.float32 if seed is None: seed = np.random.randint(10e6) return array_ops.where( random_ops.random_uniform(shape, dtype=tf.float16, seed=seed) < p, array_ops.ones(shape, dtype=dtype), array_ops.zeros(shape, dtype=dtype)) nn.random_binomial = random_binomial def gaussian_blur(input, radius=2.0): def gaussian(x, mu, sigma): return np.exp(-(float(x) - float(mu)) ** 2 / (2 * sigma ** 2)) def make_kernel(sigma): kernel_size = max(3, int(2 * 2 * sigma)) if kernel_size % 2 == 0: kernel_size += 1 mean = np.floor(0.5 * kernel_size) kernel_1d = np.array([gaussian(x, mean, sigma) for x in range(kernel_size)]) np_kernel = np.outer(kernel_1d, kernel_1d).astype(np.float32) kernel = np_kernel / np.sum(np_kernel) return kernel, kernel_size gauss_kernel, kernel_size = make_kernel(radius) padding = kernel_size//2 if padding != 0: if nn.data_format == "NHWC": padding = [ [0,0], [padding,padding], [padding,padding], [0,0] ] else: padding = [ [0,0], [0,0], [padding,padding], [padding,padding] ] else: padding = None gauss_kernel = gauss_kernel[:,:,None,None] x = input k = tf.tile (gauss_kernel, (1,1,x.shape[nn.conv2d_ch_axis],1) ) x = tf.pad(x, padding ) x = tf.nn.depthwise_conv2d(x, k, strides=[1,1,1,1], padding='VALID', data_format=nn.data_format) return x nn.gaussian_blur = gaussian_blur def style_loss(target, style, gaussian_blur_radius=0.0, loss_weight=1.0, step_size=1): def sd(content, style, loss_weight): content_nc = content.shape[ nn.conv2d_ch_axis ] style_nc = style.shape[nn.conv2d_ch_axis] if content_nc != style_nc: raise Exception("style_loss() content_nc != style_nc") c_mean, c_var = tf.nn.moments(content, axes=nn.conv2d_spatial_axes, keep_dims=True) s_mean, s_var = tf.nn.moments(style, axes=nn.conv2d_spatial_axes, keep_dims=True) c_std, s_std = tf.sqrt(c_var + 1e-5), tf.sqrt(s_var + 1e-5) mean_loss = tf.reduce_sum(tf.square(c_mean-s_mean), axis=[1,2,3]) std_loss = tf.reduce_sum(tf.square(c_std-s_std), axis=[1,2,3]) return (mean_loss + std_loss) * ( loss_weight / content_nc.value ) if gaussian_blur_radius > 0.0: target = gaussian_blur(target, gaussian_blur_radius) style = gaussian_blur(style, gaussian_blur_radius) return sd( target, style, loss_weight=loss_weight ) nn.style_loss = style_loss def dssim(img1,img2, max_val, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03): if img1.dtype != img2.dtype: raise ValueError("img1.dtype != img2.dtype") not_float32 = img1.dtype != tf.float32 if not_float32: img_dtype = img1.dtype img1 = tf.cast(img1, tf.float32) img2 = tf.cast(img2, tf.float32) filter_size = max(1, filter_size) kernel = np.arange(0, filter_size, dtype=np.float32) kernel -= (filter_size - 1 ) / 2.0 kernel = kernel**2 kernel *= ( -0.5 / (filter_sigma**2) ) kernel = np.reshape (kernel, (1,-1)) + np.reshape(kernel, (-1,1) ) kernel = tf.constant ( np.reshape (kernel, (1,-1)), dtype=tf.float32 ) kernel = tf.nn.softmax(kernel) kernel = tf.reshape (kernel, (filter_size, filter_size, 1, 1)) kernel = tf.tile (kernel, (1,1, img1.shape[ nn.conv2d_ch_axis ] ,1)) def reducer(x): return tf.nn.depthwise_conv2d(x, kernel, strides=[1,1,1,1], padding='VALID', data_format=nn.data_format) c1 = (k1 * max_val) ** 2 c2 = (k2 * max_val) ** 2 mean0 = reducer(img1) mean1 = reducer(img2) num0 = mean0 * mean1 * 2.0 den0 = tf.square(mean0) + tf.square(mean1) luminance = (num0 + c1) / (den0 + c1) num1 = reducer(img1 * img2) * 2.0 den1 = reducer(tf.square(img1) + tf.square(img2)) c2 *= 1.0 #compensation factor cs = (num1 - num0 + c2) / (den1 - den0 + c2) ssim_val = tf.reduce_mean(luminance * cs, axis=nn.conv2d_spatial_axes ) dssim = (1.0 - ssim_val ) / 2.0 if not_float32: dssim = tf.cast(dssim, img_dtype) return dssim nn.dssim = dssim def space_to_depth(x, size): if nn.data_format == "NHWC": # match NCHW version in order to switch data_format without problems b,h,w,c = x.shape.as_list() oh, ow = h // size, w // size x = tf.reshape(x, (-1, size, oh, size, ow, c)) x = tf.transpose(x, (0, 2, 4, 1, 3, 5)) x = tf.reshape(x, (-1, oh, ow, size* size* c )) return x else: return tf.space_to_depth(x, size, data_format=nn.data_format) nn.space_to_depth = space_to_depth def depth_to_space(x, size): if nn.data_format == "NHWC": # match NCHW version in order to switch data_format without problems b,h,w,c = x.shape.as_list() oh, ow = h * size, w * size oc = c // (size * size) x = tf.reshape(x, (-1, h, w, size, size, oc, ) ) x = tf.transpose(x, (0, 1, 3, 2, 4, 5)) x = tf.reshape(x, (-1, oh, ow, oc, )) return x else: cfg = nn.getCurrentDeviceConfig() if not cfg.cpu_only: return tf.depth_to_space(x, size, data_format=nn.data_format) b,c,h,w = x.shape.as_list() oh, ow = h * size, w * size oc = c // (size * size) x = tf.reshape(x, (-1, size, size, oc, h, w, ) ) x = tf.transpose(x, (0, 3, 4, 1, 5, 2)) x = tf.reshape(x, (-1, oc, oh, ow)) return x nn.depth_to_space = depth_to_space def rgb_to_lab(srgb): srgb_pixels = tf.reshape(srgb, [-1, 3]) linear_mask = tf.cast(srgb_pixels <= 0.04045, dtype=tf.float32) exponential_mask = tf.cast(srgb_pixels > 0.04045, dtype=tf.float32) rgb_pixels = (srgb_pixels / 12.92 * linear_mask) + (((srgb_pixels + 0.055) / 1.055) ** 2.4) * exponential_mask rgb_to_xyz = tf.constant([ # X Y Z [0.412453, 0.212671, 0.019334], # R [0.357580, 0.715160, 0.119193], # G [0.180423, 0.072169, 0.950227], # B ]) xyz_pixels = tf.matmul(rgb_pixels, rgb_to_xyz) xyz_normalized_pixels = tf.multiply(xyz_pixels, [1/0.950456, 1.0, 1/1.088754]) epsilon = 6/29 linear_mask = tf.cast(xyz_normalized_pixels <= (epsilon**3), dtype=tf.float32) exponential_mask = tf.cast(xyz_normalized_pixels > (epsilon**3), dtype=tf.float32) fxfyfz_pixels = (xyz_normalized_pixels / (3 * epsilon**2) + 4/29) * linear_mask + (xyz_normalized_pixels ** (1/3)) * exponential_mask fxfyfz_to_lab = tf.constant([ # l a b [ 0.0, 500.0, 0.0], # fx [116.0, -500.0, 200.0], # fy [ 0.0, 0.0, -200.0], # fz ]) lab_pixels = tf.matmul(fxfyfz_pixels, fxfyfz_to_lab) + tf.constant([-16.0, 0.0, 0.0]) return tf.reshape(lab_pixels, tf.shape(srgb)) nn.rgb_to_lab = rgb_to_lab def total_variation_mse(images): """ Same as generic total_variation, but MSE diff instead of MAE """ pixel_dif1 = images[:, 1:, :, :] - images[:, :-1, :, :] pixel_dif2 = images[:, :, 1:, :] - images[:, :, :-1, :] tot_var = ( tf.reduce_sum(tf.square(pixel_dif1), axis=[1,2,3]) + tf.reduce_sum(tf.square(pixel_dif2), axis=[1,2,3]) ) return tot_var nn.total_variation_mse = total_variation_mse def pixel_norm(x, axes): return x * tf.rsqrt(tf.reduce_mean(tf.square(x), axis=axes, keepdims=True) + 1e-06) nn.pixel_norm = pixel_norm """ def tf_suppress_lower_mean(t, eps=0.00001): if t.shape.ndims != 1: raise ValueError("tf_suppress_lower_mean: t rank must be 1") t_mean_eps = tf.reduce_mean(t) - eps q = tf.clip_by_value(t, t_mean_eps, tf.reduce_max(t) ) q = tf.clip_by_value(q-t_mean_eps, 0, eps) q = q * (t/eps) return q """ def _get_pixel_value(img, x, y): shape = tf.shape(x) batch_size = shape[0] height = shape[1] width = shape[2] batch_idx = tf.range(0, batch_size) batch_idx = tf.reshape(batch_idx, (batch_size, 1, 1)) b = tf.tile(batch_idx, (1, height, width)) indices = tf.stack([b, y, x], 3) return tf.gather_nd(img, indices) def bilinear_sampler(img, x, y): H = tf.shape(img)[1] W = tf.shape(img)[2] H_MAX = tf.cast(H - 1, tf.int32) W_MAX = tf.cast(W - 1, tf.int32) # grab 4 nearest corner points for each (x_i, y_i) x0 = tf.cast(tf.floor(x), tf.int32) x1 = x0 + 1 y0 = tf.cast(tf.floor(y), tf.int32) y1 = y0 + 1 # clip to range [0, H-1/W-1] to not violate img boundaries x0 = tf.clip_by_value(x0, 0, W_MAX) x1 = tf.clip_by_value(x1, 0, W_MAX) y0 = tf.clip_by_value(y0, 0, H_MAX) y1 = tf.clip_by_value(y1, 0, H_MAX) # get pixel value at corner coords Ia = _get_pixel_value(img, x0, y0) Ib = _get_pixel_value(img, x0, y1) Ic = _get_pixel_value(img, x1, y0) Id = _get_pixel_value(img, x1, y1) # recast as float for delta calculation x0 = tf.cast(x0, tf.float32) x1 = tf.cast(x1, tf.float32) y0 = tf.cast(y0, tf.float32) y1 = tf.cast(y1, tf.float32) # calculate deltas wa = (x1-x) * (y1-y) wb = (x1-x) * (y-y0) wc = (x-x0) * (y1-y) wd = (x-x0) * (y-y0) # add dimension for addition wa = tf.expand_dims(wa, axis=3) wb = tf.expand_dims(wb, axis=3) wc = tf.expand_dims(wc, axis=3) wd = tf.expand_dims(wd, axis=3) # compute output out = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id]) return out nn.bilinear_sampler = bilinear_sampler