import numpy as np from core.leras import nn tf = nn.tf class TanhPolar(nn.LayerBase): """ RoI Tanh-polar Transformer Network for Face Parsing in the Wild https://github.com/hhj1897/roi_tanh_warping """ def __init__(self, width, height, angular_offset_deg=270, **kwargs): self.width = width self.height = height warp_gridx, warp_gridy = TanhPolar._get_tanh_polar_warp_grids(width,height,angular_offset_deg=angular_offset_deg) restore_gridx, restore_gridy = TanhPolar._get_tanh_polar_restore_grids(width,height,angular_offset_deg=angular_offset_deg) self.warp_gridx_t = tf.constant(warp_gridx[None, ...]) self.warp_gridy_t = tf.constant(warp_gridy[None, ...]) self.restore_gridx_t = tf.constant(restore_gridx[None, ...]) self.restore_gridy_t = tf.constant(restore_gridy[None, ...]) super().__init__(**kwargs) def warp(self, inp_t): batch_t = tf.shape(inp_t)[0] warp_gridx_t = tf.tile(self.warp_gridx_t, (batch_t,1,1) ) warp_gridy_t = tf.tile(self.warp_gridy_t, (batch_t,1,1) ) if nn.data_format == "NCHW": inp_t = tf.transpose(inp_t,(0,2,3,1)) out_t = nn.bilinear_sampler(inp_t, warp_gridx_t, warp_gridy_t) if nn.data_format == "NCHW": out_t = tf.transpose(out_t,(0,3,1,2)) return out_t def restore(self, inp_t): batch_t = tf.shape(inp_t)[0] restore_gridx_t = tf.tile(self.restore_gridx_t, (batch_t,1,1) ) restore_gridy_t = tf.tile(self.restore_gridy_t, (batch_t,1,1) ) if nn.data_format == "NCHW": inp_t = tf.transpose(inp_t,(0,2,3,1)) inp_t = tf.pad(inp_t, [(0,0), (1, 1), (1, 0), (0, 0)], "SYMMETRIC") out_t = nn.bilinear_sampler(inp_t, restore_gridx_t, restore_gridy_t) if nn.data_format == "NCHW": out_t = tf.transpose(out_t,(0,3,1,2)) return out_t @staticmethod def _get_tanh_polar_warp_grids(W,H,angular_offset_deg): angular_offset_pi = angular_offset_deg * np.pi / 180.0 roi_center = np.array([ W//2, H//2], np.float32 ) roi_radii = np.array([W, H], np.float32 ) / np.pi ** 0.5 cos_offset, sin_offset = np.cos(angular_offset_pi), np.sin(angular_offset_pi) normalised_dest_indices = np.stack(np.meshgrid(np.arange(0.0, 1.0, 1.0 / W),np.arange(0.0, 2.0 * np.pi, 2.0 * np.pi / H)), axis=-1) radii = normalised_dest_indices[..., 0] orientation_x = np.cos(normalised_dest_indices[..., 1]) orientation_y = np.sin(normalised_dest_indices[..., 1]) src_radii = np.arctanh(radii) * (roi_radii[0] * roi_radii[1] / np.sqrt(roi_radii[1] ** 2 * orientation_x ** 2 + roi_radii[0] ** 2 * orientation_y ** 2)) src_x_indices = src_radii * orientation_x src_y_indices = src_radii * orientation_y src_x_indices, src_y_indices = (roi_center[0] + cos_offset * src_x_indices - sin_offset * src_y_indices, roi_center[1] + cos_offset * src_y_indices + sin_offset * src_x_indices) return src_x_indices.astype(np.float32), src_y_indices.astype(np.float32) @staticmethod def _get_tanh_polar_restore_grids(W,H,angular_offset_deg): angular_offset_pi = angular_offset_deg * np.pi / 180.0 roi_center = np.array([ W//2, H//2], np.float32 ) roi_radii = np.array([W, H], np.float32 ) / np.pi ** 0.5 cos_offset, sin_offset = np.cos(angular_offset_pi), np.sin(angular_offset_pi) dest_indices = np.stack(np.meshgrid(np.arange(W), np.arange(H)), axis=-1).astype(float) normalised_dest_indices = np.matmul(dest_indices - roi_center, np.array([[cos_offset, -sin_offset], [sin_offset, cos_offset]])) radii = np.linalg.norm(normalised_dest_indices, axis=-1) normalised_dest_indices[..., 0] /= np.clip(radii, 1e-9, None) normalised_dest_indices[..., 1] /= np.clip(radii, 1e-9, None) radii *= np.sqrt(roi_radii[1] ** 2 * normalised_dest_indices[..., 0] ** 2 + roi_radii[0] ** 2 * normalised_dest_indices[..., 1] ** 2) / roi_radii[0] / roi_radii[1] src_radii = np.tanh(radii) src_x_indices = src_radii * W + 1.0 src_y_indices = np.mod((np.arctan2(normalised_dest_indices[..., 1], normalised_dest_indices[..., 0]) / 2.0 / np.pi) * H, H) + 1.0 return src_x_indices.astype(np.float32), src_y_indices.astype(np.float32) nn.TanhPolar = TanhPolar