from core.leras import nn tf = nn.tf class InstanceNorm2D(nn.LayerBase): def __init__(self, in_ch, dtype=None, **kwargs): self.in_ch = in_ch if dtype is None: dtype = nn.floatx self.dtype = dtype super().__init__(**kwargs) def build_weights(self): kernel_initializer = tf.initializers.glorot_uniform(dtype=self.dtype) self.weight = tf.get_variable("weight", (self.in_ch,), dtype=self.dtype, initializer=kernel_initializer ) self.bias = tf.get_variable("bias", (self.in_ch,), dtype=self.dtype, initializer=tf.initializers.zeros() ) def get_weights(self): return [self.weight, self.bias] def forward(self, x): if nn.data_format == "NHWC": shape = (1,1,1,self.in_ch) else: shape = (1,self.in_ch,1,1) weight = tf.reshape ( self.weight , shape ) bias = tf.reshape ( self.bias , shape ) x_mean = tf.reduce_mean(x, axis=nn.conv2d_spatial_axes, keepdims=True ) x_std = tf.math.reduce_std(x, axis=nn.conv2d_spatial_axes, keepdims=True ) + 1e-5 x = (x - x_mean) / x_std x *= weight x += bias return x nn.InstanceNorm2D = InstanceNorm2D