import numpy as np from core.leras import nn tf = nn.tf class Dense(nn.LayerBase): def __init__(self, in_ch, out_ch, use_bias=True, use_wscale=False, maxout_ch=0, kernel_initializer=None, bias_initializer=None, trainable=True, dtype=None, **kwargs ): """ use_wscale enables weight scale (equalized learning rate) if kernel_initializer is None, it will be forced to random_normal maxout_ch https://link.springer.com/article/10.1186/s40537-019-0233-0 typical 2-4 if you want to enable DenseMaxout behaviour """ self.in_ch = in_ch self.out_ch = out_ch self.use_bias = use_bias self.use_wscale = use_wscale self.maxout_ch = maxout_ch self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.trainable = trainable if dtype is None: dtype = nn.floatx self.dtype = dtype super().__init__(**kwargs) def build_weights(self): if self.maxout_ch > 1: weight_shape = (self.in_ch,self.out_ch*self.maxout_ch) else: weight_shape = (self.in_ch,self.out_ch) kernel_initializer = self.kernel_initializer if self.use_wscale: gain = 1.0 fan_in = np.prod( weight_shape[:-1] ) he_std = gain / np.sqrt(fan_in) # He init self.wscale = tf.constant(he_std, dtype=self.dtype ) if kernel_initializer is None: kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype) if kernel_initializer is None: kernel_initializer = tf.initializers.glorot_uniform(dtype=self.dtype) self.weight = tf.get_variable("weight", weight_shape, dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) if self.use_bias: bias_initializer = self.bias_initializer if bias_initializer is None: bias_initializer = tf.initializers.zeros(dtype=self.dtype) self.bias = tf.get_variable("bias", (self.out_ch,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable ) def get_weights(self): weights = [self.weight] if self.use_bias: weights += [self.bias] return weights def forward(self, x): weight = self.weight if self.use_wscale: weight = weight * self.wscale x = tf.matmul(x, weight) if self.maxout_ch > 1: x = tf.reshape (x, (-1, self.out_ch, self.maxout_ch) ) x = tf.reduce_max(x, axis=-1) if self.use_bias: x = tf.add(x, tf.reshape(self.bias, (1,self.out_ch) ) ) return x nn.Dense = Dense