from nnlib import nnlib def VGGFace(): exec(nnlib.import_all(), locals(), globals()) img_input = Input(shape=(224,224,3) ) # Block 1 x = Conv2D(64, (3, 3), activation='relu', padding='same', name='conv1_1')(img_input) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='conv1_2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='pool1')(x) # Block 2 x = Conv2D(128, (3, 3), activation='relu', padding='same', name='conv2_1')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='conv2_2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='pool2')(x) # Block 3 x = Conv2D(256, (3, 3), activation='relu', padding='same', name='conv3_1')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='conv3_2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='conv3_3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='pool3')(x) # Block 4 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv4_1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv4_2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv4_3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='pool4')(x) # Block 5 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv5_1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv5_2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv5_3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='pool5')(x) # Classification block x = Flatten(name='flatten')(x) x = Dense(4096, name='fc6')(x) x = Activation('relu', name='fc6/relu')(x) x = Dense(4096, name='fc7')(x) x = Activation('relu', name='fc7/relu')(x) x = Dense(2622, name='fc8')(x) x = Activation('softmax', name='fc8/softmax')(x) model = Model(img_input, x, name='vggface_vgg16') weights_path = keras.utils.data_utils.get_file('rcmalli_vggface_tf_vgg16.h5', 'https://github.com/rcmalli/keras-vggface/releases/download/v2.0/rcmalli_vggface_tf_vgg16.h5') model.load_weights(weights_path, by_name=True) return model