If you want, you can manually remove unnecessary angles from src faceset after sort by yaw.
Optimized sample generators (CPU workers). Now they consume less amount of RAM and work faster.
added
4.2.other) data_src/dst util faceset pack.bat
Packs /aligned/ samples into one /aligned/samples.pak file.
After that, all faces will be deleted.
4.2.other) data_src/dst util faceset unpack.bat
unpacks faces from /aligned/samples.pak to /aligned/ dir.
After that, samples.pak will be deleted.
Packed faceset load and work faster.
4.2.other) data_src util faceset metadata save.bat
saves metadata of data_src\aligned\ faces into data_src\aligned\meta.dat
4.2.other) data_src util faceset metadata restore.bat
restore metadata from 'meta.dat' to images
if image size different from original, then it will be automatically resized
You can greatly enhance face details of src faceset by using Topaz Gigapixel software.
example https://i.imgur.com/Gwee99L.jpg
Example of workflow:
1) run 'data_src util faceset metadata save.bat'
2) launch Topaz Gigapixel
3) open 'data_src\aligned\' and select all images
4) set output folder to 'data_src\aligned_topaz' (create folder in save dialog)
5) set settings as on screenshot https://i.imgur.com/kAVWMQG.jpg
you can choose 2x, 4x, or 6x upscale rate
6) start process images and wait full process
7) rename folders:
data_src\aligned -> data_src\aligned_original
data_src\aligned_topaz -> data_src\aligned
8) copy 'data_src\aligned_original\meta.dat' to 'data_src\aligned\'
9) run 'data_src util faceset metadata restore.bat'
images will be downscaled back to original size (256x256) preserving details
metadata will be restored
10) now your new enhanced faceset is ready to use !
Synthesize new faces from existing ones by relighting them using DeepPortraitRelighter network.
With the relighted faces neural network will better reproduce face shadows.
Therefore you can synthsize shadowed faces from fully lit faceset.
https://i.imgur.com/wxcmQoi.jpg
as a result, better fakes on dark faces:
https://i.imgur.com/5xXIbz5.jpg
in OpenCL build Relighter runs on CPU,
install pytorch directly via pip install, look at requirements
Session is now saved to the model folder.
blur and erode ranges are increased to -400+400
hist-match-bw is now replaced with seamless2 mode.
Added 'ebs' color transfer mode (works only on Windows).
FANSEG model (used in FAN-x mask modes) is retrained with new model configuration
and now produces better precision and less jitter
Pixel loss may help to enhance fine details and stabilize face color. Use it only if quality does not improve over time.
SAE:
previous SAE model will not work with this update.
Greatly decreased chance of model collapse.
Increased model accuracy.
Residual blocks now default and this option has been removed.
Improved 'learn mask'.
Added masked preview (switch by space key)
Converter:
fixed rct/lct in seamless mode
added mask mode (6) learned*FAN-prd*FAN-dst
added mask editor, its created for refining dataset for FANSeg model, and not for production, but you can spend your time and test it in regular fakes with face obstructions