mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
added converter --seamless-erode-mask-modifier . This mask used to define area for opencv seamless cloning function. So if you erode it little bit , you can decrease flickering effect on some frames.
This commit is contained in:
parent
bc5ca1ab59
commit
ffddfeabdb
2 changed files with 47 additions and 36 deletions
9
main.py
9
main.py
|
@ -147,6 +147,12 @@ if __name__ == "__main__":
|
|||
except:
|
||||
arguments.blur_mask_modifier = 0
|
||||
|
||||
if arguments.mode == 'seamless' or arguments.mode == 'seamless-hist-match':
|
||||
try:
|
||||
arguments.seamless_erode_mask_modifier = int ( input ("Choose seamless erode mask modifier [-20..20] (default 0) : ") )
|
||||
except:
|
||||
arguments.seamless_erode_mask_modifier = 0
|
||||
|
||||
try:
|
||||
arguments.output_face_scale_modifier = int ( input ("Choose output face scale modifier [-50..50] (default 0) : ") )
|
||||
except:
|
||||
|
@ -169,6 +175,7 @@ if __name__ == "__main__":
|
|||
|
||||
arguments.erode_mask_modifier = np.clip ( int(arguments.erode_mask_modifier), -200, 200)
|
||||
arguments.blur_mask_modifier = np.clip ( int(arguments.blur_mask_modifier), -200, 200)
|
||||
arguments.seamless_erode_mask_modifier = np.clip ( int(arguments.seamless_erode_mask_modifier), -20, 20)
|
||||
arguments.output_face_scale_modifier = np.clip ( int(arguments.output_face_scale_modifier), -50, 50)
|
||||
|
||||
from mainscripts import Converter
|
||||
|
@ -185,6 +192,7 @@ if __name__ == "__main__":
|
|||
use_predicted_mask = arguments.use_predicted_mask,
|
||||
erode_mask_modifier = arguments.erode_mask_modifier,
|
||||
blur_mask_modifier = arguments.blur_mask_modifier,
|
||||
seamless_erode_mask_modifier = arguments.seamless_erode_mask_modifier,
|
||||
output_face_scale_modifier = arguments.output_face_scale_modifier,
|
||||
final_image_color_degrade_power = arguments.final_image_color_degrade_power,
|
||||
transfercolor = arguments.transfercolor,
|
||||
|
@ -205,6 +213,7 @@ if __name__ == "__main__":
|
|||
convert_parser.add_argument('--use-predicted-mask', action="store_true", dest="use_predicted_mask", default=True, help="Use predicted mask by model. Default - True.")
|
||||
convert_parser.add_argument('--erode-mask-modifier', type=int, dest="erode_mask_modifier", default=0, help="Automatic erode mask modifier. Valid range [-200..200].")
|
||||
convert_parser.add_argument('--blur-mask-modifier', type=int, dest="blur_mask_modifier", default=0, help="Automatic blur mask modifier. Valid range [-200..200].")
|
||||
convert_parser.add_argument('--seamless-erode-mask-modifier', type=int, dest="seamless_erode_mask_modifier", default=0, help="Automatic seamless erode mask modifier. Valid range [-200..200].")
|
||||
convert_parser.add_argument('--output-face-scale-modifier', type=int, dest="output_face_scale_modifier", default=0, help="Output face scale modifier. Valid range [-50..50].")
|
||||
convert_parser.add_argument('--final-image-color-degrade-power', type=int, dest="final_image_color_degrade_power", default=0, help="Degrades colors of final image to hide face problems. Valid range [0..100].")
|
||||
convert_parser.add_argument('--transfercolor', action="store_true", dest="transfercolor", default=False, help="Transfer color from dst face to converted final face.")
|
||||
|
|
|
@ -12,8 +12,6 @@ class ConverterMasked(ConverterBase):
|
|||
predictor_input_size=0,
|
||||
output_size=0,
|
||||
face_type=FaceType.FULL,
|
||||
erode_mask = True,
|
||||
blur_mask = True,
|
||||
clip_border_mask_per = 0,
|
||||
masked_hist_match = True,
|
||||
hist_match_threshold = 255,
|
||||
|
@ -21,6 +19,7 @@ class ConverterMasked(ConverterBase):
|
|||
use_predicted_mask = True,
|
||||
erode_mask_modifier=0,
|
||||
blur_mask_modifier=0,
|
||||
seamless_erode_mask_modifier=0,
|
||||
output_face_scale_modifier=0.0,
|
||||
transfercolor=False,
|
||||
final_image_color_degrade_power=0,
|
||||
|
@ -33,26 +32,19 @@ class ConverterMasked(ConverterBase):
|
|||
self.output_size = output_size
|
||||
self.face_type = face_type
|
||||
self.use_predicted_mask = use_predicted_mask
|
||||
self.erode_mask = erode_mask
|
||||
self.blur_mask = blur_mask
|
||||
self.clip_border_mask_per = clip_border_mask_per
|
||||
self.masked_hist_match = masked_hist_match
|
||||
self.hist_match_threshold = hist_match_threshold
|
||||
self.mode = mode
|
||||
self.erode_mask_modifier = erode_mask_modifier
|
||||
self.blur_mask_modifier = blur_mask_modifier
|
||||
self.seamless_erode_mask_modifier = seamless_erode_mask_modifier
|
||||
self.output_face_scale = np.clip(1.0 + output_face_scale_modifier*0.01, 0.5, 1.5)
|
||||
self.transfercolor = transfercolor
|
||||
self.TFLabConverter = None
|
||||
self.final_image_color_degrade_power = np.clip (final_image_color_degrade_power, 0, 100)
|
||||
self.alpha = alpha
|
||||
|
||||
if self.erode_mask_modifier != 0 and not self.erode_mask:
|
||||
print ("Erode mask modifier not used in this model.")
|
||||
|
||||
if self.blur_mask_modifier != 0 and not self.blur_mask:
|
||||
print ("Blur modifier not used in this model.")
|
||||
|
||||
#override
|
||||
def get_mode(self):
|
||||
return ConverterBase.MODE_FACE
|
||||
|
@ -126,33 +118,43 @@ class ConverterMasked(ConverterBase):
|
|||
if debug:
|
||||
print ("lowest_len = %f" % (lowest_len) )
|
||||
|
||||
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.erode_mask_modifier )
|
||||
blur = int( lowest_len * 0.10 * 0.01*self.blur_mask_modifier )
|
||||
|
||||
if debug:
|
||||
print ("erode_size = %d, blur_size = %d" % (ero, blur) )
|
||||
|
||||
img_mask_blurry_aaa = img_face_mask_aaa
|
||||
if self.erode_mask:
|
||||
if self.erode_mask_modifier != 0:
|
||||
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.erode_mask_modifier )
|
||||
if debug:
|
||||
print ("erode_size = %d" % (ero) )
|
||||
|
||||
if ero > 0:
|
||||
img_mask_blurry_aaa = cv2.erode(img_mask_blurry_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
||||
elif ero < 0:
|
||||
img_mask_blurry_aaa = cv2.dilate(img_mask_blurry_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
||||
|
||||
if self.blur_mask and blur > 0:
|
||||
if self.seamless_erode_mask_modifier != 0:
|
||||
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.seamless_erode_mask_modifier )
|
||||
if ero > 0:
|
||||
img_face_mask_flatten_aaa = cv2.erode(img_face_mask_flatten_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
||||
elif ero < 0:
|
||||
img_face_mask_flatten_aaa = cv2.dilate(img_face_mask_flatten_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
||||
if debug:
|
||||
print ("seamless_erode_size = %d" % (ero) )
|
||||
|
||||
if self.blur_mask_modifier > 0:
|
||||
blur = int( lowest_len * 0.10 * 0.01*self.blur_mask_modifier )
|
||||
img_mask_blurry_aaa = cv2.blur(img_mask_blurry_aaa, (blur, blur) )
|
||||
if debug:
|
||||
print ("blur_size = %d" % (blur) )
|
||||
|
||||
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
|
||||
|
||||
if self.clip_border_mask_per > 0:
|
||||
prd_border_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=prd_face_mask_a.dtype)
|
||||
prd_border_size = int ( prd_border_rect_mask_a.shape[1] * self.clip_border_mask_per )
|
||||
|
||||
prd_border_rect_mask_a[0:prd_border_size,:,:] = 0
|
||||
prd_border_rect_mask_a[-prd_border_size:,:,:] = 0
|
||||
prd_border_rect_mask_a[:,0:prd_border_size,:] = 0
|
||||
prd_border_rect_mask_a[:,-prd_border_size:,:] = 0
|
||||
prd_border_rect_mask_a = np.expand_dims(cv2.blur(prd_border_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
|
||||
#if self.clip_border_mask_per > 0:
|
||||
# prd_border_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=prd_face_mask_a.dtype)
|
||||
# prd_border_size = int ( prd_border_rect_mask_a.shape[1] * self.clip_border_mask_per )
|
||||
#
|
||||
# prd_border_rect_mask_a[0:prd_border_size,:,:] = 0
|
||||
# prd_border_rect_mask_a[-prd_border_size:,:,:] = 0
|
||||
# prd_border_rect_mask_a[:,0:prd_border_size,:] = 0
|
||||
# prd_border_rect_mask_a[:,-prd_border_size:,:] = 0
|
||||
# prd_border_rect_mask_a = np.expand_dims(cv2.blur(prd_border_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
|
||||
|
||||
if self.mode == 'hist-match-bw':
|
||||
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
|
||||
|
@ -199,12 +201,12 @@ class ConverterMasked(ConverterBase):
|
|||
if debug:
|
||||
debugs += [out_img.copy()]
|
||||
|
||||
if self.clip_border_mask_per > 0:
|
||||
img_prd_border_rect_mask_a = cv2.warpAffine( prd_border_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
img_prd_border_rect_mask_a = np.expand_dims (img_prd_border_rect_mask_a, -1)
|
||||
|
||||
out_img = out_img * img_prd_border_rect_mask_a + img_bgr * (1.0 - img_prd_border_rect_mask_a)
|
||||
img_mask_blurry_aaa *= img_prd_border_rect_mask_a
|
||||
#if self.clip_border_mask_per > 0:
|
||||
# img_prd_border_rect_mask_a = cv2.warpAffine( prd_border_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
# img_prd_border_rect_mask_a = np.expand_dims (img_prd_border_rect_mask_a, -1)
|
||||
#
|
||||
# out_img = out_img * img_prd_border_rect_mask_a + img_bgr * (1.0 - img_prd_border_rect_mask_a)
|
||||
# img_mask_blurry_aaa *= img_prd_border_rect_mask_a
|
||||
|
||||
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue