diff --git a/samplelib/SampleProcessor.py b/samplelib/SampleProcessor.py index 1fd5472..7fb8e00 100644 --- a/samplelib/SampleProcessor.py +++ b/samplelib/SampleProcessor.py @@ -266,55 +266,6 @@ class SampleProcessor(object): img_v = np.clip (img_v + (rnd_state.random()-0.5)*a, 0, 1 ) img = np.clip( cv2.cvtColor(cv2.merge([img_h, img_s, img_v]), cv2.COLOR_HSV2BGR) , 0, 1 ) - random_shadow_amount = 1 - if random_shadow_amount != 0 and rnd_state.random() < 0.5: - high_ratio=(1,2) - low_ratio=(0.01, 0.5) - left_low_ratio=(0.4,0.6) - left_high_ratio=(0,0.2) - right_low_ratio=(0.4,0.6) - right_high_ratio = (0,0.2) - - #check - img = np.clip(img*255, 0, 255).astype(np.uint8) - - w, h, _= img.shape - - high_bright_factor = rnd_state.uniform(high_ratio[0], high_ratio[1]) - low_bright_factor = rnd_state.uniform(low_ratio[0], low_ratio[1]) - - left_low_factor = rnd_state.uniform(left_low_ratio[0]*h, left_low_ratio[1]*h) - left_high_factor = rnd_state.uniform(left_high_ratio[0]*h, left_high_ratio[1]*h) - right_low_factor = rnd_state.uniform(right_low_ratio[0]*h, right_low_ratio[1]*h) - right_high_factor = rnd_state.uniform(right_high_ratio[0]*h, right_high_ratio[1]*h) - - tl = (0, left_high_factor) - bl = (0, left_high_factor+left_low_factor) - - tr = (w, right_high_factor) - br = (w, right_high_factor+right_low_factor) - - contour = np.array([tl, tr, br, bl], dtype=np.int32) - - mask = np.zeros(img.shape, dtype=img.dtype) - cv2.fillPoly(mask,[contour],(255,255,255)) - mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) - inverted_mask = cv2.bitwise_not(mask) - - hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) - hsv[..., 2] = cv2.multiply(hsv[..., 2], high_bright_factor) - high_brightness = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) - hsv[..., 2] = cv2.multiply(hsv[..., 2], low_bright_factor) - low_brightness = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) - - for i in range(3): - img[:, :, i] = img[:, :, i] *(mask/255) + high_brightness[:, :, i] *(1-mask/255) - img[:, :, i] = img[:, :, i] *(inverted_mask/255) + low_brightness[:, :, i] *(1-inverted_mask/255) - - img = np.clip(img/255.0, 0, 1).astype(np.float32) - - img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=border_replicate) - img = np.clip(img.astype(np.float32), 0, 1) # Transform from BGR to desired channel_type if channel_type == SPCT.BGR: