mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-21 22:13:20 -07:00
Merge pull request #122 from faceshiftlabs/feature/random-color
Feature/random color
This commit is contained in:
commit
ff09d89166
6 changed files with 114 additions and 60 deletions
12
CHANGELOG.md
12
CHANGELOG.md
|
@ -5,11 +5,14 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
||||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||||
|
|
||||||
## [Unreleased]
|
## [Unreleased]
|
||||||
### Added
|
|
||||||
- [Random color training option](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/random-color)
|
|
||||||
- [MS-SSIM loss training option](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/ms-ssim-loss-2)
|
|
||||||
### In Progress
|
### In Progress
|
||||||
|
- [MS-SSIM loss training option](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/ms-ssim-loss-2)
|
||||||
- [Freezeable layers (encoder/decoder/etc.)](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/freezable-weights)
|
- [Freezeable layers (encoder/decoder/etc.)](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/freezable-weights)
|
||||||
|
- [GAN stability improvements](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/gan-updates)
|
||||||
|
|
||||||
|
## [1.2.0] - 2020-03-17
|
||||||
|
### Added
|
||||||
|
- [Random color training option](doc/features/random-color/README.md)
|
||||||
|
|
||||||
## [1.1.5] - 2020-03-16
|
## [1.1.5] - 2020-03-16
|
||||||
### Fixed
|
### Fixed
|
||||||
|
@ -42,7 +45,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||||
- Reset stale master branch to [seranus/DeepFaceLab](https://github.com/seranus/DeepFaceLab),
|
- Reset stale master branch to [seranus/DeepFaceLab](https://github.com/seranus/DeepFaceLab),
|
||||||
21 commits ahead of [iperov/DeepFaceLab](https://github.com/iperov/DeepFaceLab) ([compare](https://github.com/iperov/DeepFaceLab/compare/4818183...seranus:3f5ae05))
|
21 commits ahead of [iperov/DeepFaceLab](https://github.com/iperov/DeepFaceLab) ([compare](https://github.com/iperov/DeepFaceLab/compare/4818183...seranus:3f5ae05))
|
||||||
|
|
||||||
[Unreleased]: https://github.com/olivierlacan/keep-a-changelog/compare/v1.1.5...HEAD
|
[Unreleased]: https://github.com/olivierlacan/keep-a-changelog/compare/v1.2.0...HEAD
|
||||||
|
[1.2.0]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.5...v1.2.0
|
||||||
[1.1.5]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.4...v1.1.5
|
[1.1.5]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.4...v1.1.5
|
||||||
[1.1.4]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.3...v1.1.4
|
[1.1.4]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.3...v1.1.4
|
||||||
[1.1.3]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.2...v1.1.3
|
[1.1.3]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.2...v1.1.3
|
||||||
|
|
|
@ -92,7 +92,7 @@ def color_transfer_mkl(x0, x1):
|
||||||
|
|
||||||
def color_transfer_idt(i0, i1, bins=256, n_rot=20):
|
def color_transfer_idt(i0, i1, bins=256, n_rot=20):
|
||||||
import scipy.stats
|
import scipy.stats
|
||||||
|
|
||||||
relaxation = 1 / n_rot
|
relaxation = 1 / n_rot
|
||||||
h,w,c = i0.shape
|
h,w,c = i0.shape
|
||||||
h1,w1,c1 = i1.shape
|
h1,w1,c1 = i1.shape
|
||||||
|
@ -381,6 +381,25 @@ def color_augmentation(img):
|
||||||
return (face / 255.0).astype(np.float32)
|
return (face / 255.0).astype(np.float32)
|
||||||
|
|
||||||
|
|
||||||
|
def random_lab_rotation(image, seed=None):
|
||||||
|
"""
|
||||||
|
Randomly rotates image color around the L axis in LAB colorspace,
|
||||||
|
keeping perceptual lightness constant.
|
||||||
|
"""
|
||||||
|
image = cv2.cvtColor(image.astype(np.float32), cv2.COLOR_BGR2LAB)
|
||||||
|
M = np.eye(3)
|
||||||
|
M[1:, 1:] = special_ortho_group.rvs(2, 1, seed)
|
||||||
|
image = image.dot(M)
|
||||||
|
l, a, b = cv2.split(image)
|
||||||
|
l = np.clip(l, 0, 100)
|
||||||
|
a = np.clip(a, -127, 127)
|
||||||
|
b = np.clip(b, -127, 127)
|
||||||
|
image = cv2.merge([l, a, b])
|
||||||
|
image = cv2.cvtColor(image.astype(np.float32), cv2.COLOR_LAB2BGR)
|
||||||
|
np.clip(image, 0, 1, out=image)
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
def random_lab(image):
|
def random_lab(image):
|
||||||
""" Perform random color/lightness adjustment in L*a*b* colorspace """
|
""" Perform random color/lightness adjustment in L*a*b* colorspace """
|
||||||
amount_l = 30 / 100
|
amount_l = 30 / 100
|
||||||
|
@ -416,4 +435,4 @@ def random_clahe(image):
|
||||||
tileGridSize=(grid_size, grid_size))
|
tileGridSize=(grid_size, grid_size))
|
||||||
for chan in range(3):
|
for chan in range(3):
|
||||||
image[:, :, chan] = clahe.apply(image[:, :, chan])
|
image[:, :, chan] = clahe.apply(image[:, :, chan])
|
||||||
return image
|
return image
|
||||||
|
|
22
doc/features/random-color/README.md
Normal file
22
doc/features/random-color/README.md
Normal file
|
@ -0,0 +1,22 @@
|
||||||
|
# Random Color option
|
||||||
|
|
||||||
|
Helps train the model to generalize perceptual color and lightness, and improves color transfer between src and dst.
|
||||||
|
|
||||||
|
- [DESCRIPTION](#description)
|
||||||
|
- [USAGE](#usage)
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
## DESCRIPTION
|
||||||
|
|
||||||
|
Converts images to [CIE L\*a\*b* colorspace](https://en.wikipedia.org/wiki/CIELAB_color_space),
|
||||||
|
and then randomly rotates around the `L*` axis. While the perceptual lightness stays constant, only the `a*` and `b*`
|
||||||
|
color channels are modified. After rotation, converts back to BGR (blue/green/red) colorspace.
|
||||||
|
|
||||||
|
If visualized using the [CIE L\*a\*b* cylindical model](https://en.wikipedia.org/wiki/CIELAB_color_space#Cylindrical_model),
|
||||||
|
this is a random rotation of `h°` (hue angle, angle of the hue in the CIELAB color wheel),
|
||||||
|
maintaining the same `C*` (chroma, relative saturation).
|
||||||
|
|
||||||
|
## USAGE
|
||||||
|
|
||||||
|
`[n] Random color ( y/n ?:help ) : y`
|
BIN
doc/features/random-color/example.jpeg
Normal file
BIN
doc/features/random-color/example.jpeg
Normal file
Binary file not shown.
After Width: | Height: | Size: 133 KiB |
|
@ -58,6 +58,7 @@ class SAEHDModel(ModelBase):
|
||||||
default_face_style_power = self.options['face_style_power'] = self.load_or_def_option('face_style_power', 0.0)
|
default_face_style_power = self.options['face_style_power'] = self.load_or_def_option('face_style_power', 0.0)
|
||||||
default_bg_style_power = self.options['bg_style_power'] = self.load_or_def_option('bg_style_power', 0.0)
|
default_bg_style_power = self.options['bg_style_power'] = self.load_or_def_option('bg_style_power', 0.0)
|
||||||
default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none')
|
default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none')
|
||||||
|
default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False)
|
||||||
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
|
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
|
||||||
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
||||||
|
|
||||||
|
@ -167,6 +168,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
self.options['bg_style_power'] = np.clip ( io.input_number("Background style power", default_bg_style_power, add_info="0.0..100.0", help_message="Learn the area outside mask of the predicted face to be the same as dst. If you want to use this option with 'whole_face' you have to use XSeg trained mask. For whole_face you have to use XSeg trained mask. This can make face more like dst. Enabling this option increases the chance of model collapse. Typical value is 2.0"), 0.0, 100.0 )
|
self.options['bg_style_power'] = np.clip ( io.input_number("Background style power", default_bg_style_power, add_info="0.0..100.0", help_message="Learn the area outside mask of the predicted face to be the same as dst. If you want to use this option with 'whole_face' you have to use XSeg trained mask. For whole_face you have to use XSeg trained mask. This can make face more like dst. Enabling this option increases the chance of model collapse. Typical value is 2.0"), 0.0, 100.0 )
|
||||||
|
|
||||||
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot', 'fs-aug'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best. FS aug adds random color to dst and src")
|
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot', 'fs-aug'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best. FS aug adds random color to dst and src")
|
||||||
|
self.options['random_color'] = io.input_bool ("Random color", default_random_color, help_message="Samples are randomly rotated around the L axis in LAB colorspace, helps generalize training")
|
||||||
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
|
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
|
||||||
|
|
||||||
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly.")
|
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly.")
|
||||||
|
@ -650,11 +652,13 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
if ct_mode == 'fs-aug':
|
if ct_mode == 'fs-aug':
|
||||||
fs_aug = 'fs-aug'
|
fs_aug = 'fs-aug'
|
||||||
|
|
||||||
|
channel_type = SampleProcessor.ChannelType.LAB_RAND_TRANSFORM if self.options['random_color'] else SampleProcessor.ChannelType.BGR
|
||||||
|
|
||||||
self.set_training_data_generators ([
|
self.set_training_data_generators ([
|
||||||
SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
||||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
],
|
],
|
||||||
|
@ -663,8 +667,8 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
|
|
||||||
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
||||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
],
|
],
|
||||||
|
|
|
@ -8,6 +8,7 @@ import numpy as np
|
||||||
from core import imagelib
|
from core import imagelib
|
||||||
from core.cv2ex import *
|
from core.cv2ex import *
|
||||||
from core.imagelib import sd
|
from core.imagelib import sd
|
||||||
|
from core.imagelib.color_transfer import random_lab_rotation
|
||||||
from facelib import FaceType, LandmarksProcessor
|
from facelib import FaceType, LandmarksProcessor
|
||||||
|
|
||||||
|
|
||||||
|
@ -26,6 +27,8 @@ class SampleProcessor(object):
|
||||||
BGR = 1 #BGR
|
BGR = 1 #BGR
|
||||||
G = 2 #Grayscale
|
G = 2 #Grayscale
|
||||||
GGG = 3 #3xGrayscale
|
GGG = 3 #3xGrayscale
|
||||||
|
LAB_RAND_TRANSFORM = 4 # LAB random transform
|
||||||
|
|
||||||
|
|
||||||
class FaceMaskType(IntEnum):
|
class FaceMaskType(IntEnum):
|
||||||
NONE = 0
|
NONE = 0
|
||||||
|
@ -56,18 +59,18 @@ class SampleProcessor(object):
|
||||||
sample_landmarks = sample.landmarks
|
sample_landmarks = sample.landmarks
|
||||||
ct_sample_bgr = None
|
ct_sample_bgr = None
|
||||||
h,w,c = sample_bgr.shape
|
h,w,c = sample_bgr.shape
|
||||||
|
|
||||||
def get_full_face_mask():
|
def get_full_face_mask():
|
||||||
xseg_mask = sample.get_xseg_mask()
|
xseg_mask = sample.get_xseg_mask()
|
||||||
if xseg_mask is not None:
|
if xseg_mask is not None:
|
||||||
if xseg_mask.shape[0] != h or xseg_mask.shape[1] != w:
|
if xseg_mask.shape[0] != h or xseg_mask.shape[1] != w:
|
||||||
xseg_mask = cv2.resize(xseg_mask, (w,h), interpolation=cv2.INTER_CUBIC)
|
xseg_mask = cv2.resize(xseg_mask, (w,h), interpolation=cv2.INTER_CUBIC)
|
||||||
xseg_mask = imagelib.normalize_channels(xseg_mask, 1)
|
xseg_mask = imagelib.normalize_channels(xseg_mask, 1)
|
||||||
return np.clip(xseg_mask, 0, 1)
|
return np.clip(xseg_mask, 0, 1)
|
||||||
else:
|
else:
|
||||||
full_face_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample_landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
|
full_face_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample_landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
|
||||||
return np.clip(full_face_mask, 0, 1)
|
return np.clip(full_face_mask, 0, 1)
|
||||||
|
|
||||||
def get_eyes_mask():
|
def get_eyes_mask():
|
||||||
eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks)
|
eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks)
|
||||||
# set eye masks to 1-2
|
# set eye masks to 1-2
|
||||||
|
@ -86,25 +89,25 @@ class SampleProcessor(object):
|
||||||
|
|
||||||
if debug and is_face_sample:
|
if debug and is_face_sample:
|
||||||
LandmarksProcessor.draw_landmarks (sample_bgr, sample_landmarks, (0, 1, 0))
|
LandmarksProcessor.draw_landmarks (sample_bgr, sample_landmarks, (0, 1, 0))
|
||||||
|
|
||||||
params_per_resolution = {}
|
params_per_resolution = {}
|
||||||
warp_rnd_state = np.random.RandomState (sample_rnd_seed-1)
|
warp_rnd_state = np.random.RandomState (sample_rnd_seed-1)
|
||||||
for opts in output_sample_types:
|
for opts in output_sample_types:
|
||||||
resolution = opts.get('resolution', None)
|
resolution = opts.get('resolution', None)
|
||||||
if resolution is None:
|
if resolution is None:
|
||||||
continue
|
continue
|
||||||
params_per_resolution[resolution] = imagelib.gen_warp_params(resolution,
|
params_per_resolution[resolution] = imagelib.gen_warp_params(resolution,
|
||||||
sample_process_options.random_flip,
|
sample_process_options.random_flip,
|
||||||
rotation_range=sample_process_options.rotation_range,
|
rotation_range=sample_process_options.rotation_range,
|
||||||
scale_range=sample_process_options.scale_range,
|
scale_range=sample_process_options.scale_range,
|
||||||
tx_range=sample_process_options.tx_range,
|
tx_range=sample_process_options.tx_range,
|
||||||
ty_range=sample_process_options.ty_range,
|
ty_range=sample_process_options.ty_range,
|
||||||
rnd_state=warp_rnd_state)
|
rnd_state=warp_rnd_state)
|
||||||
|
|
||||||
outputs_sample = []
|
outputs_sample = []
|
||||||
for opts in output_sample_types:
|
for opts in output_sample_types:
|
||||||
sample_type = opts.get('sample_type', SPST.NONE)
|
sample_type = opts.get('sample_type', SPST.NONE)
|
||||||
channel_type = opts.get('channel_type', SPCT.NONE)
|
channel_type = opts.get('channel_type', SPCT.NONE)
|
||||||
resolution = opts.get('resolution', 0)
|
resolution = opts.get('resolution', 0)
|
||||||
nearest_resize_to = opts.get('nearest_resize_to', None)
|
nearest_resize_to = opts.get('nearest_resize_to', None)
|
||||||
warp = opts.get('warp', False)
|
warp = opts.get('warp', False)
|
||||||
|
@ -118,29 +121,29 @@ class SampleProcessor(object):
|
||||||
normalize_tanh = opts.get('normalize_tanh', False)
|
normalize_tanh = opts.get('normalize_tanh', False)
|
||||||
ct_mode = opts.get('ct_mode', None)
|
ct_mode = opts.get('ct_mode', None)
|
||||||
data_format = opts.get('data_format', 'NHWC')
|
data_format = opts.get('data_format', 'NHWC')
|
||||||
|
|
||||||
if sample_type == SPST.FACE_MASK or sample_type == SPST.IMAGE:
|
if sample_type == SPST.FACE_MASK or sample_type == SPST.IMAGE:
|
||||||
border_replicate = False
|
border_replicate = False
|
||||||
elif sample_type == SPST.FACE_IMAGE:
|
elif sample_type == SPST.FACE_IMAGE:
|
||||||
border_replicate = True
|
border_replicate = True
|
||||||
|
|
||||||
|
|
||||||
border_replicate = opts.get('border_replicate', border_replicate)
|
border_replicate = opts.get('border_replicate', border_replicate)
|
||||||
borderMode = cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT
|
borderMode = cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT
|
||||||
|
|
||||||
|
|
||||||
if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
|
if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
|
||||||
if not is_face_sample:
|
if not is_face_sample:
|
||||||
raise ValueError("face_samples should be provided for sample_type FACE_*")
|
raise ValueError("face_samples should be provided for sample_type FACE_*")
|
||||||
|
|
||||||
if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
|
if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
|
||||||
face_type = opts.get('face_type', None)
|
face_type = opts.get('face_type', None)
|
||||||
face_mask_type = opts.get('face_mask_type', SPFMT.NONE)
|
face_mask_type = opts.get('face_mask_type', SPFMT.NONE)
|
||||||
|
|
||||||
if face_type is None:
|
if face_type is None:
|
||||||
raise ValueError("face_type must be defined for face samples")
|
raise ValueError("face_type must be defined for face samples")
|
||||||
|
|
||||||
if sample_type == SPST.FACE_MASK:
|
if sample_type == SPST.FACE_MASK:
|
||||||
if face_mask_type == SPFMT.FULL_FACE:
|
if face_mask_type == SPFMT.FULL_FACE:
|
||||||
img = get_full_face_mask()
|
img = get_full_face_mask()
|
||||||
elif face_mask_type == SPFMT.EYES:
|
elif face_mask_type == SPFMT.EYES:
|
||||||
|
@ -149,42 +152,42 @@ class SampleProcessor(object):
|
||||||
# sets both eyes and mouth mask parts
|
# sets both eyes and mouth mask parts
|
||||||
img = get_full_face_mask()
|
img = get_full_face_mask()
|
||||||
mask = img.copy()
|
mask = img.copy()
|
||||||
mask[mask != 0.0] = 1.0
|
mask[mask != 0.0] = 1.0
|
||||||
eye_mask = get_eyes_mask() * mask
|
eye_mask = get_eyes_mask() * mask
|
||||||
img = np.where(eye_mask > 1, eye_mask, img)
|
img = np.where(eye_mask > 1, eye_mask, img)
|
||||||
|
|
||||||
mouth_mask = get_mouth_mask() * mask
|
mouth_mask = get_mouth_mask() * mask
|
||||||
img = np.where(mouth_mask > 2, mouth_mask, img)
|
img = np.where(mouth_mask > 2, mouth_mask, img)
|
||||||
else:
|
else:
|
||||||
img = np.zeros ( sample_bgr.shape[0:2]+(1,), dtype=np.float32)
|
img = np.zeros ( sample_bgr.shape[0:2]+(1,), dtype=np.float32)
|
||||||
|
|
||||||
if sample_face_type == FaceType.MARK_ONLY:
|
if sample_face_type == FaceType.MARK_ONLY:
|
||||||
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, warp_resolution, face_type)
|
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, warp_resolution, face_type)
|
||||||
img = cv2.warpAffine( img, mat, (warp_resolution, warp_resolution), flags=cv2.INTER_LINEAR )
|
img = cv2.warpAffine( img, mat, (warp_resolution, warp_resolution), flags=cv2.INTER_LINEAR )
|
||||||
|
|
||||||
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
|
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
|
||||||
img = cv2.resize( img, (resolution,resolution), interpolation=cv2.INTER_LINEAR )
|
img = cv2.resize( img, (resolution,resolution), interpolation=cv2.INTER_LINEAR )
|
||||||
else:
|
else:
|
||||||
if face_type != sample_face_type:
|
if face_type != sample_face_type:
|
||||||
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
|
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
|
||||||
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_LINEAR )
|
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_LINEAR )
|
||||||
else:
|
else:
|
||||||
if w != resolution:
|
if w != resolution:
|
||||||
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_LINEAR )
|
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_LINEAR )
|
||||||
|
|
||||||
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
|
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
|
||||||
|
|
||||||
if len(img.shape) == 2:
|
if len(img.shape) == 2:
|
||||||
img = img[...,None]
|
img = img[...,None]
|
||||||
|
|
||||||
if channel_type == SPCT.G:
|
if channel_type == SPCT.G:
|
||||||
out_sample = img.astype(np.float32)
|
out_sample = img.astype(np.float32)
|
||||||
else:
|
else:
|
||||||
raise ValueError("only channel_type.G supported for the mask")
|
raise ValueError("only channel_type.G supported for the mask")
|
||||||
|
|
||||||
elif sample_type == SPST.FACE_IMAGE:
|
elif sample_type == SPST.FACE_IMAGE:
|
||||||
img = sample_bgr
|
img = sample_bgr
|
||||||
|
|
||||||
if random_rgb_levels:
|
if random_rgb_levels:
|
||||||
random_mask = sd.random_circle_faded ([w,w], rnd_state=np.random.RandomState (sample_rnd_seed) ) if random_circle_mask else None
|
random_mask = sd.random_circle_faded ([w,w], rnd_state=np.random.RandomState (sample_rnd_seed) ) if random_circle_mask else None
|
||||||
img = imagelib.apply_random_rgb_levels(img, mask=random_mask, rnd_state=np.random.RandomState (sample_rnd_seed) )
|
img = imagelib.apply_random_rgb_levels(img, mask=random_mask, rnd_state=np.random.RandomState (sample_rnd_seed) )
|
||||||
|
@ -193,15 +196,15 @@ class SampleProcessor(object):
|
||||||
random_mask = sd.random_circle_faded ([w,w], rnd_state=np.random.RandomState (sample_rnd_seed+1) ) if random_circle_mask else None
|
random_mask = sd.random_circle_faded ([w,w], rnd_state=np.random.RandomState (sample_rnd_seed+1) ) if random_circle_mask else None
|
||||||
img = imagelib.apply_random_hsv_shift(img, mask=random_mask, rnd_state=np.random.RandomState (sample_rnd_seed+1) )
|
img = imagelib.apply_random_hsv_shift(img, mask=random_mask, rnd_state=np.random.RandomState (sample_rnd_seed+1) )
|
||||||
|
|
||||||
|
|
||||||
if face_type != sample_face_type:
|
if face_type != sample_face_type:
|
||||||
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
|
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
|
||||||
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_CUBIC )
|
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_CUBIC )
|
||||||
else:
|
else:
|
||||||
if w != resolution:
|
if w != resolution:
|
||||||
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC )
|
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC )
|
||||||
|
|
||||||
# Apply random color transfer
|
# Apply random color transfer
|
||||||
if ct_mode is not None and ct_sample is not None or ct_mode == 'fs-aug':
|
if ct_mode is not None and ct_sample is not None or ct_mode == 'fs-aug':
|
||||||
if ct_mode == 'fs-aug':
|
if ct_mode == 'fs-aug':
|
||||||
img = imagelib.color_augmentation(img)
|
img = imagelib.color_augmentation(img)
|
||||||
|
@ -210,27 +213,29 @@ class SampleProcessor(object):
|
||||||
ct_sample_bgr = ct_sample.load_bgr()
|
ct_sample_bgr = ct_sample.load_bgr()
|
||||||
img = imagelib.color_transfer (ct_mode, img, cv2.resize( ct_sample_bgr, (resolution,resolution), interpolation=cv2.INTER_LINEAR ) )
|
img = imagelib.color_transfer (ct_mode, img, cv2.resize( ct_sample_bgr, (resolution,resolution), interpolation=cv2.INTER_LINEAR ) )
|
||||||
|
|
||||||
|
|
||||||
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate)
|
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate)
|
||||||
img = np.clip(img.astype(np.float32), 0, 1)
|
img = np.clip(img.astype(np.float32), 0, 1)
|
||||||
|
|
||||||
if motion_blur is not None:
|
if motion_blur is not None:
|
||||||
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+2)) if random_circle_mask else None
|
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+2)) if random_circle_mask else None
|
||||||
img = imagelib.apply_random_motion_blur(img, *motion_blur, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+2) )
|
img = imagelib.apply_random_motion_blur(img, *motion_blur, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+2) )
|
||||||
|
|
||||||
if gaussian_blur is not None:
|
if gaussian_blur is not None:
|
||||||
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+3)) if random_circle_mask else None
|
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+3)) if random_circle_mask else None
|
||||||
img = imagelib.apply_random_gaussian_blur(img, *gaussian_blur, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+3) )
|
img = imagelib.apply_random_gaussian_blur(img, *gaussian_blur, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+3) )
|
||||||
|
|
||||||
if random_bilinear_resize is not None:
|
if random_bilinear_resize is not None:
|
||||||
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+4)) if random_circle_mask else None
|
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+4)) if random_circle_mask else None
|
||||||
img = imagelib.apply_random_bilinear_resize(img, *random_bilinear_resize, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+4) )
|
img = imagelib.apply_random_bilinear_resize(img, *random_bilinear_resize, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+4) )
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Transform from BGR to desired channel_type
|
# Transform from BGR to desired channel_type
|
||||||
if channel_type == SPCT.BGR:
|
if channel_type == SPCT.BGR:
|
||||||
out_sample = img
|
out_sample = img
|
||||||
|
elif channel_type == SPCT.LAB_RAND_TRANSFORM:
|
||||||
|
out_sample = random_lab_rotation(img, sample_rnd_seed)
|
||||||
elif channel_type == SPCT.G:
|
elif channel_type == SPCT.G:
|
||||||
out_sample = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[...,None]
|
out_sample = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[...,None]
|
||||||
elif channel_type == SPCT.GGG:
|
elif channel_type == SPCT.GGG:
|
||||||
|
@ -239,22 +244,22 @@ class SampleProcessor(object):
|
||||||
# Final transformations
|
# Final transformations
|
||||||
if nearest_resize_to is not None:
|
if nearest_resize_to is not None:
|
||||||
out_sample = cv2_resize(out_sample, (nearest_resize_to,nearest_resize_to), interpolation=cv2.INTER_NEAREST)
|
out_sample = cv2_resize(out_sample, (nearest_resize_to,nearest_resize_to), interpolation=cv2.INTER_NEAREST)
|
||||||
|
|
||||||
if not debug:
|
if not debug:
|
||||||
if normalize_tanh:
|
if normalize_tanh:
|
||||||
out_sample = np.clip (out_sample * 2.0 - 1.0, -1.0, 1.0)
|
out_sample = np.clip (out_sample * 2.0 - 1.0, -1.0, 1.0)
|
||||||
if data_format == "NCHW":
|
if data_format == "NCHW":
|
||||||
out_sample = np.transpose(out_sample, (2,0,1) )
|
out_sample = np.transpose(out_sample, (2,0,1) )
|
||||||
elif sample_type == SPST.IMAGE:
|
elif sample_type == SPST.IMAGE:
|
||||||
img = sample_bgr
|
img = sample_bgr
|
||||||
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=True)
|
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=True)
|
||||||
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC )
|
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC )
|
||||||
out_sample = img
|
out_sample = img
|
||||||
|
|
||||||
if data_format == "NCHW":
|
if data_format == "NCHW":
|
||||||
out_sample = np.transpose(out_sample, (2,0,1) )
|
out_sample = np.transpose(out_sample, (2,0,1) )
|
||||||
|
|
||||||
|
|
||||||
elif sample_type == SPST.LANDMARKS_ARRAY:
|
elif sample_type == SPST.LANDMARKS_ARRAY:
|
||||||
l = sample_landmarks
|
l = sample_landmarks
|
||||||
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
|
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue