mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-05 20:42:11 -07:00
added AMD/Intel cards support via DirectX12 ( DirectML backend )
This commit is contained in:
parent
fc4a49c3e7
commit
fdb143ff47
7 changed files with 166 additions and 116 deletions
|
@ -1,12 +1,19 @@
|
|||
import sys
|
||||
import ctypes
|
||||
import os
|
||||
import multiprocessing
|
||||
import json
|
||||
import time
|
||||
from pathlib import Path
|
||||
from core.interact import interact as io
|
||||
|
||||
|
||||
class Device(object):
|
||||
def __init__(self, index, name, total_mem, free_mem, cc=0):
|
||||
def __init__(self, index, tf_dev_type, name, total_mem, free_mem):
|
||||
self.index = index
|
||||
self.tf_dev_type = tf_dev_type
|
||||
self.name = name
|
||||
self.cc = cc
|
||||
|
||||
self.total_mem = total_mem
|
||||
self.total_mem_gb = total_mem / 1024**3
|
||||
self.free_mem = free_mem
|
||||
|
@ -82,12 +89,134 @@ class Devices(object):
|
|||
result.append (device)
|
||||
return Devices(result)
|
||||
|
||||
@staticmethod
|
||||
def _get_tf_devices_proc(q : multiprocessing.Queue):
|
||||
|
||||
compute_cache_path = Path(os.environ['APPDATA']) / 'NVIDIA' / ('ComputeCache_ALL')
|
||||
os.environ['CUDA_CACHE_PATH'] = str(compute_cache_path)
|
||||
if not compute_cache_path.exists():
|
||||
io.log_info("Caching GPU kernels...")
|
||||
compute_cache_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
import tensorflow
|
||||
|
||||
tf_version = tensorflow.version.VERSION
|
||||
#if tf_version is None:
|
||||
# tf_version = tensorflow.version.GIT_VERSION
|
||||
if tf_version[0] == 'v':
|
||||
tf_version = tf_version[1:]
|
||||
if tf_version[0] == '2':
|
||||
tf = tensorflow.compat.v1
|
||||
else:
|
||||
tf = tensorflow
|
||||
|
||||
import logging
|
||||
# Disable tensorflow warnings
|
||||
tf_logger = logging.getLogger('tensorflow')
|
||||
tf_logger.setLevel(logging.ERROR)
|
||||
|
||||
from tensorflow.python.client import device_lib
|
||||
|
||||
devices = []
|
||||
|
||||
physical_devices = device_lib.list_local_devices()
|
||||
physical_devices_f = {}
|
||||
for dev in physical_devices:
|
||||
dev_type = dev.device_type
|
||||
dev_tf_name = dev.name
|
||||
dev_tf_name = dev_tf_name[ dev_tf_name.index(dev_type) : ]
|
||||
|
||||
dev_idx = int(dev_tf_name.split(':')[-1])
|
||||
|
||||
if dev_type in ['GPU','DML']:
|
||||
dev_name = dev_tf_name
|
||||
|
||||
dev_desc = dev.physical_device_desc
|
||||
if len(dev_desc) != 0:
|
||||
if dev_desc[0] == '{':
|
||||
dev_desc_json = json.loads(dev_desc)
|
||||
dev_desc_json_name = dev_desc_json.get('name',None)
|
||||
if dev_desc_json_name is not None:
|
||||
dev_name = dev_desc_json_name
|
||||
else:
|
||||
for param, value in ( v.split(':') for v in dev_desc.split(',') ):
|
||||
param = param.strip()
|
||||
value = value.strip()
|
||||
if param == 'name':
|
||||
dev_name = value
|
||||
break
|
||||
|
||||
physical_devices_f[dev_idx] = (dev_type, dev_name, dev.memory_limit)
|
||||
|
||||
q.put(physical_devices_f)
|
||||
time.sleep(0.1)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def initialize_main_env():
|
||||
os.environ['NN_DEVICES_INITIALIZED'] = '1'
|
||||
os.environ['NN_DEVICES_COUNT'] = '0'
|
||||
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 0:
|
||||
return
|
||||
|
||||
if 'CUDA_VISIBLE_DEVICES' in os.environ.keys():
|
||||
os.environ.pop('CUDA_VISIBLE_DEVICES')
|
||||
|
||||
os.environ['CUDA_CACHE_MAXSIZE'] = '2147483647'
|
||||
os.environ['TF_MIN_GPU_MULTIPROCESSOR_COUNT'] = '2'
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # tf log errors only
|
||||
|
||||
q = multiprocessing.Queue()
|
||||
p = multiprocessing.Process(target=Devices._get_tf_devices_proc, args=(q,), daemon=True)
|
||||
p.start()
|
||||
p.join()
|
||||
|
||||
visible_devices = q.get()
|
||||
|
||||
os.environ['NN_DEVICES_INITIALIZED'] = '1'
|
||||
os.environ['NN_DEVICES_COUNT'] = str(len(visible_devices))
|
||||
|
||||
for i in visible_devices:
|
||||
dev_type, name, total_mem = visible_devices[i]
|
||||
|
||||
os.environ[f'NN_DEVICE_{i}_TF_DEV_TYPE'] = dev_type
|
||||
os.environ[f'NN_DEVICE_{i}_NAME'] = name
|
||||
os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(total_mem)
|
||||
os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(total_mem)
|
||||
|
||||
|
||||
|
||||
@staticmethod
|
||||
def getDevices():
|
||||
if Devices.all_devices is None:
|
||||
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 1:
|
||||
raise Exception("nn devices are not initialized. Run initialize_main_env() in main process.")
|
||||
devices = []
|
||||
for i in range ( int(os.environ['NN_DEVICES_COUNT']) ):
|
||||
devices.append ( Device(index=i,
|
||||
tf_dev_type=os.environ[f'NN_DEVICE_{i}_TF_DEV_TYPE'],
|
||||
name=os.environ[f'NN_DEVICE_{i}_NAME'],
|
||||
total_mem=int(os.environ[f'NN_DEVICE_{i}_TOTAL_MEM']),
|
||||
free_mem=int(os.environ[f'NN_DEVICE_{i}_FREE_MEM']), )
|
||||
)
|
||||
Devices.all_devices = Devices(devices)
|
||||
|
||||
return Devices.all_devices
|
||||
|
||||
"""
|
||||
|
||||
|
||||
# {'name' : name.split(b'\0', 1)[0].decode(),
|
||||
# 'total_mem' : totalMem.value
|
||||
# }
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
return
|
||||
|
||||
|
||||
|
||||
|
||||
min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35))
|
||||
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
|
||||
for libname in libnames:
|
||||
|
@ -139,70 +268,4 @@ class Devices(object):
|
|||
os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(device['total_mem'])
|
||||
os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(device['free_mem'])
|
||||
os.environ[f'NN_DEVICE_{i}_CC'] = str(device['cc'])
|
||||
|
||||
@staticmethod
|
||||
def getDevices():
|
||||
if Devices.all_devices is None:
|
||||
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 1:
|
||||
raise Exception("nn devices are not initialized. Run initialize_main_env() in main process.")
|
||||
devices = []
|
||||
for i in range ( int(os.environ['NN_DEVICES_COUNT']) ):
|
||||
devices.append ( Device(index=i,
|
||||
name=os.environ[f'NN_DEVICE_{i}_NAME'],
|
||||
total_mem=int(os.environ[f'NN_DEVICE_{i}_TOTAL_MEM']),
|
||||
free_mem=int(os.environ[f'NN_DEVICE_{i}_FREE_MEM']),
|
||||
cc=int(os.environ[f'NN_DEVICE_{i}_CC']) ))
|
||||
Devices.all_devices = Devices(devices)
|
||||
|
||||
return Devices.all_devices
|
||||
|
||||
"""
|
||||
if Devices.all_devices is None:
|
||||
min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35))
|
||||
|
||||
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
|
||||
for libname in libnames:
|
||||
try:
|
||||
cuda = ctypes.CDLL(libname)
|
||||
except:
|
||||
continue
|
||||
else:
|
||||
break
|
||||
else:
|
||||
return Devices([])
|
||||
|
||||
nGpus = ctypes.c_int()
|
||||
name = b' ' * 200
|
||||
cc_major = ctypes.c_int()
|
||||
cc_minor = ctypes.c_int()
|
||||
freeMem = ctypes.c_size_t()
|
||||
totalMem = ctypes.c_size_t()
|
||||
|
||||
result = ctypes.c_int()
|
||||
device = ctypes.c_int()
|
||||
context = ctypes.c_void_p()
|
||||
error_str = ctypes.c_char_p()
|
||||
|
||||
devices = []
|
||||
|
||||
if cuda.cuInit(0) == 0 and \
|
||||
cuda.cuDeviceGetCount(ctypes.byref(nGpus)) == 0:
|
||||
for i in range(nGpus.value):
|
||||
if cuda.cuDeviceGet(ctypes.byref(device), i) != 0 or \
|
||||
cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device) != 0 or \
|
||||
cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device) != 0:
|
||||
continue
|
||||
|
||||
if cuda.cuCtxCreate_v2(ctypes.byref(context), 0, device) == 0:
|
||||
if cuda.cuMemGetInfo_v2(ctypes.byref(freeMem), ctypes.byref(totalMem)) == 0:
|
||||
cc = cc_major.value * 10 + cc_minor.value
|
||||
if cc >= min_cc:
|
||||
devices.append ( Device(index=i,
|
||||
name=name.split(b'\0', 1)[0].decode(),
|
||||
total_mem=totalMem.value,
|
||||
free_mem=freeMem.value,
|
||||
cc=cc) )
|
||||
cuda.cuCtxDetach(context)
|
||||
Devices.all_devices = Devices(devices)
|
||||
return Devices.all_devices
|
||||
"""
|
|
@ -33,7 +33,7 @@ class nn():
|
|||
tf = None
|
||||
tf_sess = None
|
||||
tf_sess_config = None
|
||||
tf_default_device = None
|
||||
tf_default_device_name = None
|
||||
|
||||
data_format = None
|
||||
conv2d_ch_axis = None
|
||||
|
@ -51,9 +51,6 @@ class nn():
|
|||
|
||||
# Manipulate environment variables before import tensorflow
|
||||
|
||||
if 'CUDA_VISIBLE_DEVICES' in os.environ.keys():
|
||||
os.environ.pop('CUDA_VISIBLE_DEVICES')
|
||||
|
||||
first_run = False
|
||||
if len(device_config.devices) != 0:
|
||||
if sys.platform[0:3] == 'win':
|
||||
|
@ -68,22 +65,19 @@ class nn():
|
|||
compute_cache_path = Path(os.environ['APPDATA']) / 'NVIDIA' / ('ComputeCache' + devices_str)
|
||||
if not compute_cache_path.exists():
|
||||
first_run = True
|
||||
compute_cache_path.mkdir(parents=True, exist_ok=True)
|
||||
os.environ['CUDA_CACHE_PATH'] = str(compute_cache_path)
|
||||
|
||||
os.environ['TF_MIN_GPU_MULTIPROCESSOR_COUNT'] = '2'
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # tf log errors only
|
||||
|
||||
if first_run:
|
||||
io.log_info("Caching GPU kernels...")
|
||||
|
||||
import tensorflow
|
||||
|
||||
tf_version = getattr(tensorflow,'VERSION', None)
|
||||
if tf_version is None:
|
||||
tf_version = tensorflow.version.GIT_VERSION
|
||||
if tf_version[0] == 'v':
|
||||
tf_version = tf_version[1:]
|
||||
|
||||
tf_version = tensorflow.version.VERSION
|
||||
#if tf_version is None:
|
||||
# tf_version = tensorflow.version.GIT_VERSION
|
||||
if tf_version[0] == 'v':
|
||||
tf_version = tf_version[1:]
|
||||
if tf_version[0] == '2':
|
||||
tf = tensorflow.compat.v1
|
||||
else:
|
||||
|
@ -108,10 +102,11 @@ class nn():
|
|||
|
||||
# Configure tensorflow session-config
|
||||
if len(device_config.devices) == 0:
|
||||
nn.tf_default_device = "/CPU:0"
|
||||
config = tf.ConfigProto(device_count={'GPU': 0})
|
||||
nn.tf_default_device_name = '/CPU:0'
|
||||
else:
|
||||
nn.tf_default_device = "/GPU:0"
|
||||
nn.tf_default_device_name = f'/{device_config.devices[0].tf_dev_type}:0'
|
||||
|
||||
config = tf.ConfigProto()
|
||||
config.gpu_options.visible_device_list = ','.join([str(device.index) for device in device_config.devices])
|
||||
|
||||
|
@ -202,14 +197,6 @@ class nn():
|
|||
nn.tf_sess.close()
|
||||
nn.tf_sess = None
|
||||
|
||||
@staticmethod
|
||||
def get_current_device():
|
||||
# Undocumented access to last tf.device(...)
|
||||
objs = nn.tf.get_default_graph()._device_function_stack.peek_objs()
|
||||
if len(objs) != 0:
|
||||
return objs[0].display_name
|
||||
return nn.tf_default_device
|
||||
|
||||
@staticmethod
|
||||
def ask_choose_device_idxs(choose_only_one=False, allow_cpu=True, suggest_best_multi_gpu=False, suggest_all_gpu=False):
|
||||
devices = Devices.getDevices()
|
||||
|
|
|
@ -161,11 +161,11 @@ class FaceEnhancer(object):
|
|||
if not model_path.exists():
|
||||
raise Exception("Unable to load FaceEnhancer.npy")
|
||||
|
||||
with tf.device ('/CPU:0' if place_model_on_cpu else '/GPU:0'):
|
||||
with tf.device ('/CPU:0' if place_model_on_cpu else nn.tf_default_device_name):
|
||||
self.model = FaceEnhancer()
|
||||
self.model.load_weights (model_path)
|
||||
|
||||
with tf.device ('/CPU:0' if run_on_cpu else '/GPU:0'):
|
||||
with tf.device ('/CPU:0' if run_on_cpu else nn.tf_default_device_name):
|
||||
self.model.build_for_run ([ (tf.float32, nn.get4Dshape (192,192,3) ),
|
||||
(tf.float32, (None,1,) ),
|
||||
(tf.float32, (None,1,) ),
|
||||
|
|
|
@ -39,7 +39,7 @@ class XSegNet(object):
|
|||
self.target_t = tf.placeholder (nn.floatx, nn.get4Dshape(resolution,resolution,1) )
|
||||
|
||||
# Initializing model classes
|
||||
with tf.device ('/CPU:0' if place_model_on_cpu else '/GPU:0'):
|
||||
with tf.device ('/CPU:0' if place_model_on_cpu else nn.tf_default_device_name):
|
||||
self.model = nn.XSeg(3, 32, 1, name=name)
|
||||
self.model_weights = self.model.get_weights()
|
||||
if training:
|
||||
|
@ -53,7 +53,7 @@ class XSegNet(object):
|
|||
self.model_filename_list += [ [self.model, f'{model_name}.npy'] ]
|
||||
|
||||
if not training:
|
||||
with tf.device ('/CPU:0' if run_on_cpu else '/GPU:0'):
|
||||
with tf.device ('/CPU:0' if run_on_cpu else nn.tf_default_device_name):
|
||||
_, pred = self.model(self.input_t)
|
||||
|
||||
def net_run(input_np):
|
||||
|
|
|
@ -31,7 +31,7 @@ class QModel(ModelBase):
|
|||
masked_training = True
|
||||
|
||||
models_opt_on_gpu = len(devices) >= 1 and all([dev.total_mem_gb >= 4 for dev in devices])
|
||||
models_opt_device = '/GPU:0' if models_opt_on_gpu and self.is_training else '/CPU:0'
|
||||
models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0'
|
||||
optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
|
||||
|
||||
input_ch = 3
|
||||
|
@ -96,7 +96,7 @@ class QModel(ModelBase):
|
|||
gpu_src_dst_loss_gvs = []
|
||||
|
||||
for gpu_id in range(gpu_count):
|
||||
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
||||
with tf.device(f'/CPU:0'):
|
||||
# slice on CPU, otherwise all batch data will be transfered to GPU first
|
||||
|
@ -190,7 +190,7 @@ class QModel(ModelBase):
|
|||
self.AE_view = AE_view
|
||||
else:
|
||||
# Initializing merge function
|
||||
with tf.device( f'/GPU:0' if len(devices) != 0 else f'/CPU:0'):
|
||||
with tf.device( nn.tf_default_device_name if len(devices) != 0 else f'/CPU:0'):
|
||||
gpu_dst_code = self.inter(self.encoder(self.warped_dst))
|
||||
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)
|
||||
_, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)
|
||||
|
|
|
@ -236,8 +236,9 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
if ct_mode == 'none':
|
||||
ct_mode = None
|
||||
|
||||
|
||||
models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu']
|
||||
models_opt_device = '/GPU:0' if models_opt_on_gpu and self.is_training else '/CPU:0'
|
||||
models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0'
|
||||
optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
|
||||
|
||||
input_ch=3
|
||||
|
@ -336,7 +337,6 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
|
||||
self.set_batch_size( gpu_count*bs_per_gpu)
|
||||
|
||||
|
||||
# Compute losses per GPU
|
||||
gpu_pred_src_src_list = []
|
||||
gpu_pred_dst_dst_list = []
|
||||
|
@ -350,9 +350,9 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
gpu_G_loss_gvs = []
|
||||
gpu_D_code_loss_gvs = []
|
||||
gpu_D_src_dst_loss_gvs = []
|
||||
for gpu_id in range(gpu_count):
|
||||
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||
|
||||
for gpu_id in range(gpu_count):
|
||||
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||
with tf.device(f'/CPU:0'):
|
||||
# slice on CPU, otherwise all batch data will be transfered to GPU first
|
||||
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
||||
|
@ -360,10 +360,10 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
|
||||
gpu_target_src = self.target_src [batch_slice,:,:,:]
|
||||
gpu_target_dst = self.target_dst [batch_slice,:,:,:]
|
||||
gpu_target_srcm = self.target_srcm[batch_slice,:,:,:]
|
||||
gpu_target_srcm_em = self.target_srcm_em[batch_slice,:,:,:]
|
||||
gpu_target_dstm = self.target_dstm[batch_slice,:,:,:]
|
||||
gpu_target_dstm_em = self.target_dstm_em[batch_slice,:,:,:]
|
||||
gpu_target_srcm = self.target_srcm[batch_slice,:,:,:]
|
||||
gpu_target_srcm_em = self.target_srcm_em[batch_slice,:,:,:]
|
||||
gpu_target_dstm = self.target_dstm[batch_slice,:,:,:]
|
||||
gpu_target_dstm_em = self.target_dstm_em[batch_slice,:,:,:]
|
||||
|
||||
# process model tensors
|
||||
if 'df' in archi_type:
|
||||
|
@ -571,7 +571,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
|||
self.AE_view = AE_view
|
||||
else:
|
||||
# Initializing merge function
|
||||
with tf.device( f'/GPU:0' if len(devices) != 0 else f'/CPU:0'):
|
||||
with tf.device( nn.tf_default_device_name if len(devices) != 0 else f'/CPU:0'):
|
||||
if 'df' in archi_type:
|
||||
gpu_dst_code = self.inter(self.encoder(self.warped_dst))
|
||||
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)
|
||||
|
|
|
@ -52,7 +52,7 @@ class XSegModel(ModelBase):
|
|||
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
||||
|
||||
place_model_on_cpu = len(devices) == 0
|
||||
models_opt_device = '/CPU:0' if place_model_on_cpu else '/GPU:0'
|
||||
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
|
||||
|
||||
bgr_shape = nn.get4Dshape(resolution,resolution,3)
|
||||
mask_shape = nn.get4Dshape(resolution,resolution,1)
|
||||
|
@ -83,7 +83,7 @@ class XSegModel(ModelBase):
|
|||
for gpu_id in range(gpu_count):
|
||||
|
||||
|
||||
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||
with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||
with tf.device(f'/CPU:0'):
|
||||
# slice on CPU, otherwise all batch data will be transfered to GPU first
|
||||
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue