added AMD/Intel cards support via DirectX12 ( DirectML backend )

This commit is contained in:
iperov 2021-04-22 18:19:15 +04:00
parent fc4a49c3e7
commit fdb143ff47
7 changed files with 166 additions and 116 deletions

View file

@ -1,12 +1,19 @@
import sys import sys
import ctypes import ctypes
import os import os
import multiprocessing
import json
import time
from pathlib import Path
from core.interact import interact as io
class Device(object): class Device(object):
def __init__(self, index, name, total_mem, free_mem, cc=0): def __init__(self, index, tf_dev_type, name, total_mem, free_mem):
self.index = index self.index = index
self.tf_dev_type = tf_dev_type
self.name = name self.name = name
self.cc = cc
self.total_mem = total_mem self.total_mem = total_mem
self.total_mem_gb = total_mem / 1024**3 self.total_mem_gb = total_mem / 1024**3
self.free_mem = free_mem self.free_mem = free_mem
@ -82,12 +89,134 @@ class Devices(object):
result.append (device) result.append (device)
return Devices(result) return Devices(result)
@staticmethod
def _get_tf_devices_proc(q : multiprocessing.Queue):
compute_cache_path = Path(os.environ['APPDATA']) / 'NVIDIA' / ('ComputeCache_ALL')
os.environ['CUDA_CACHE_PATH'] = str(compute_cache_path)
if not compute_cache_path.exists():
io.log_info("Caching GPU kernels...")
compute_cache_path.mkdir(parents=True, exist_ok=True)
import tensorflow
tf_version = tensorflow.version.VERSION
#if tf_version is None:
# tf_version = tensorflow.version.GIT_VERSION
if tf_version[0] == 'v':
tf_version = tf_version[1:]
if tf_version[0] == '2':
tf = tensorflow.compat.v1
else:
tf = tensorflow
import logging
# Disable tensorflow warnings
tf_logger = logging.getLogger('tensorflow')
tf_logger.setLevel(logging.ERROR)
from tensorflow.python.client import device_lib
devices = []
physical_devices = device_lib.list_local_devices()
physical_devices_f = {}
for dev in physical_devices:
dev_type = dev.device_type
dev_tf_name = dev.name
dev_tf_name = dev_tf_name[ dev_tf_name.index(dev_type) : ]
dev_idx = int(dev_tf_name.split(':')[-1])
if dev_type in ['GPU','DML']:
dev_name = dev_tf_name
dev_desc = dev.physical_device_desc
if len(dev_desc) != 0:
if dev_desc[0] == '{':
dev_desc_json = json.loads(dev_desc)
dev_desc_json_name = dev_desc_json.get('name',None)
if dev_desc_json_name is not None:
dev_name = dev_desc_json_name
else:
for param, value in ( v.split(':') for v in dev_desc.split(',') ):
param = param.strip()
value = value.strip()
if param == 'name':
dev_name = value
break
physical_devices_f[dev_idx] = (dev_type, dev_name, dev.memory_limit)
q.put(physical_devices_f)
time.sleep(0.1)
@staticmethod @staticmethod
def initialize_main_env(): def initialize_main_env():
os.environ['NN_DEVICES_INITIALIZED'] = '1' if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 0:
os.environ['NN_DEVICES_COUNT'] = '0' return
if 'CUDA_VISIBLE_DEVICES' in os.environ.keys():
os.environ.pop('CUDA_VISIBLE_DEVICES')
os.environ['CUDA_CACHE_MAXSIZE'] = '2147483647' os.environ['CUDA_CACHE_MAXSIZE'] = '2147483647'
os.environ['TF_MIN_GPU_MULTIPROCESSOR_COUNT'] = '2'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # tf log errors only
q = multiprocessing.Queue()
p = multiprocessing.Process(target=Devices._get_tf_devices_proc, args=(q,), daemon=True)
p.start()
p.join()
visible_devices = q.get()
os.environ['NN_DEVICES_INITIALIZED'] = '1'
os.environ['NN_DEVICES_COUNT'] = str(len(visible_devices))
for i in visible_devices:
dev_type, name, total_mem = visible_devices[i]
os.environ[f'NN_DEVICE_{i}_TF_DEV_TYPE'] = dev_type
os.environ[f'NN_DEVICE_{i}_NAME'] = name
os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(total_mem)
os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(total_mem)
@staticmethod
def getDevices():
if Devices.all_devices is None:
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 1:
raise Exception("nn devices are not initialized. Run initialize_main_env() in main process.")
devices = []
for i in range ( int(os.environ['NN_DEVICES_COUNT']) ):
devices.append ( Device(index=i,
tf_dev_type=os.environ[f'NN_DEVICE_{i}_TF_DEV_TYPE'],
name=os.environ[f'NN_DEVICE_{i}_NAME'],
total_mem=int(os.environ[f'NN_DEVICE_{i}_TOTAL_MEM']),
free_mem=int(os.environ[f'NN_DEVICE_{i}_FREE_MEM']), )
)
Devices.all_devices = Devices(devices)
return Devices.all_devices
"""
# {'name' : name.split(b'\0', 1)[0].decode(),
# 'total_mem' : totalMem.value
# }
return
min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35)) min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35))
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll') libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
for libname in libnames: for libname in libnames:
@ -139,70 +268,4 @@ class Devices(object):
os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(device['total_mem']) os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(device['total_mem'])
os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(device['free_mem']) os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(device['free_mem'])
os.environ[f'NN_DEVICE_{i}_CC'] = str(device['cc']) os.environ[f'NN_DEVICE_{i}_CC'] = str(device['cc'])
@staticmethod
def getDevices():
if Devices.all_devices is None:
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 1:
raise Exception("nn devices are not initialized. Run initialize_main_env() in main process.")
devices = []
for i in range ( int(os.environ['NN_DEVICES_COUNT']) ):
devices.append ( Device(index=i,
name=os.environ[f'NN_DEVICE_{i}_NAME'],
total_mem=int(os.environ[f'NN_DEVICE_{i}_TOTAL_MEM']),
free_mem=int(os.environ[f'NN_DEVICE_{i}_FREE_MEM']),
cc=int(os.environ[f'NN_DEVICE_{i}_CC']) ))
Devices.all_devices = Devices(devices)
return Devices.all_devices
"""
if Devices.all_devices is None:
min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35))
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
for libname in libnames:
try:
cuda = ctypes.CDLL(libname)
except:
continue
else:
break
else:
return Devices([])
nGpus = ctypes.c_int()
name = b' ' * 200
cc_major = ctypes.c_int()
cc_minor = ctypes.c_int()
freeMem = ctypes.c_size_t()
totalMem = ctypes.c_size_t()
result = ctypes.c_int()
device = ctypes.c_int()
context = ctypes.c_void_p()
error_str = ctypes.c_char_p()
devices = []
if cuda.cuInit(0) == 0 and \
cuda.cuDeviceGetCount(ctypes.byref(nGpus)) == 0:
for i in range(nGpus.value):
if cuda.cuDeviceGet(ctypes.byref(device), i) != 0 or \
cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device) != 0 or \
cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device) != 0:
continue
if cuda.cuCtxCreate_v2(ctypes.byref(context), 0, device) == 0:
if cuda.cuMemGetInfo_v2(ctypes.byref(freeMem), ctypes.byref(totalMem)) == 0:
cc = cc_major.value * 10 + cc_minor.value
if cc >= min_cc:
devices.append ( Device(index=i,
name=name.split(b'\0', 1)[0].decode(),
total_mem=totalMem.value,
free_mem=freeMem.value,
cc=cc) )
cuda.cuCtxDetach(context)
Devices.all_devices = Devices(devices)
return Devices.all_devices
""" """

View file

@ -33,8 +33,8 @@ class nn():
tf = None tf = None
tf_sess = None tf_sess = None
tf_sess_config = None tf_sess_config = None
tf_default_device = None tf_default_device_name = None
data_format = None data_format = None
conv2d_ch_axis = None conv2d_ch_axis = None
conv2d_spatial_axes = None conv2d_spatial_axes = None
@ -50,9 +50,6 @@ class nn():
nn.setCurrentDeviceConfig(device_config) nn.setCurrentDeviceConfig(device_config)
# Manipulate environment variables before import tensorflow # Manipulate environment variables before import tensorflow
if 'CUDA_VISIBLE_DEVICES' in os.environ.keys():
os.environ.pop('CUDA_VISIBLE_DEVICES')
first_run = False first_run = False
if len(device_config.devices) != 0: if len(device_config.devices) != 0:
@ -68,22 +65,19 @@ class nn():
compute_cache_path = Path(os.environ['APPDATA']) / 'NVIDIA' / ('ComputeCache' + devices_str) compute_cache_path = Path(os.environ['APPDATA']) / 'NVIDIA' / ('ComputeCache' + devices_str)
if not compute_cache_path.exists(): if not compute_cache_path.exists():
first_run = True first_run = True
compute_cache_path.mkdir(parents=True, exist_ok=True)
os.environ['CUDA_CACHE_PATH'] = str(compute_cache_path) os.environ['CUDA_CACHE_PATH'] = str(compute_cache_path)
os.environ['TF_MIN_GPU_MULTIPROCESSOR_COUNT'] = '2'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # tf log errors only
if first_run: if first_run:
io.log_info("Caching GPU kernels...") io.log_info("Caching GPU kernels...")
import tensorflow import tensorflow
tf_version = getattr(tensorflow,'VERSION', None) tf_version = tensorflow.version.VERSION
if tf_version is None: #if tf_version is None:
tf_version = tensorflow.version.GIT_VERSION # tf_version = tensorflow.version.GIT_VERSION
if tf_version[0] == 'v': if tf_version[0] == 'v':
tf_version = tf_version[1:] tf_version = tf_version[1:]
if tf_version[0] == '2': if tf_version[0] == '2':
tf = tensorflow.compat.v1 tf = tensorflow.compat.v1
else: else:
@ -108,13 +102,14 @@ class nn():
# Configure tensorflow session-config # Configure tensorflow session-config
if len(device_config.devices) == 0: if len(device_config.devices) == 0:
nn.tf_default_device = "/CPU:0"
config = tf.ConfigProto(device_count={'GPU': 0}) config = tf.ConfigProto(device_count={'GPU': 0})
nn.tf_default_device_name = '/CPU:0'
else: else:
nn.tf_default_device = "/GPU:0" nn.tf_default_device_name = f'/{device_config.devices[0].tf_dev_type}:0'
config = tf.ConfigProto() config = tf.ConfigProto()
config.gpu_options.visible_device_list = ','.join([str(device.index) for device in device_config.devices]) config.gpu_options.visible_device_list = ','.join([str(device.index) for device in device_config.devices])
config.gpu_options.force_gpu_compatible = True config.gpu_options.force_gpu_compatible = True
config.gpu_options.allow_growth = True config.gpu_options.allow_growth = True
nn.tf_sess_config = config nn.tf_sess_config = config
@ -202,14 +197,6 @@ class nn():
nn.tf_sess.close() nn.tf_sess.close()
nn.tf_sess = None nn.tf_sess = None
@staticmethod
def get_current_device():
# Undocumented access to last tf.device(...)
objs = nn.tf.get_default_graph()._device_function_stack.peek_objs()
if len(objs) != 0:
return objs[0].display_name
return nn.tf_default_device
@staticmethod @staticmethod
def ask_choose_device_idxs(choose_only_one=False, allow_cpu=True, suggest_best_multi_gpu=False, suggest_all_gpu=False): def ask_choose_device_idxs(choose_only_one=False, allow_cpu=True, suggest_best_multi_gpu=False, suggest_all_gpu=False):
devices = Devices.getDevices() devices = Devices.getDevices()

View file

@ -161,11 +161,11 @@ class FaceEnhancer(object):
if not model_path.exists(): if not model_path.exists():
raise Exception("Unable to load FaceEnhancer.npy") raise Exception("Unable to load FaceEnhancer.npy")
with tf.device ('/CPU:0' if place_model_on_cpu else '/GPU:0'): with tf.device ('/CPU:0' if place_model_on_cpu else nn.tf_default_device_name):
self.model = FaceEnhancer() self.model = FaceEnhancer()
self.model.load_weights (model_path) self.model.load_weights (model_path)
with tf.device ('/CPU:0' if run_on_cpu else '/GPU:0'): with tf.device ('/CPU:0' if run_on_cpu else nn.tf_default_device_name):
self.model.build_for_run ([ (tf.float32, nn.get4Dshape (192,192,3) ), self.model.build_for_run ([ (tf.float32, nn.get4Dshape (192,192,3) ),
(tf.float32, (None,1,) ), (tf.float32, (None,1,) ),
(tf.float32, (None,1,) ), (tf.float32, (None,1,) ),

View file

@ -39,7 +39,7 @@ class XSegNet(object):
self.target_t = tf.placeholder (nn.floatx, nn.get4Dshape(resolution,resolution,1) ) self.target_t = tf.placeholder (nn.floatx, nn.get4Dshape(resolution,resolution,1) )
# Initializing model classes # Initializing model classes
with tf.device ('/CPU:0' if place_model_on_cpu else '/GPU:0'): with tf.device ('/CPU:0' if place_model_on_cpu else nn.tf_default_device_name):
self.model = nn.XSeg(3, 32, 1, name=name) self.model = nn.XSeg(3, 32, 1, name=name)
self.model_weights = self.model.get_weights() self.model_weights = self.model.get_weights()
if training: if training:
@ -53,7 +53,7 @@ class XSegNet(object):
self.model_filename_list += [ [self.model, f'{model_name}.npy'] ] self.model_filename_list += [ [self.model, f'{model_name}.npy'] ]
if not training: if not training:
with tf.device ('/CPU:0' if run_on_cpu else '/GPU:0'): with tf.device ('/CPU:0' if run_on_cpu else nn.tf_default_device_name):
_, pred = self.model(self.input_t) _, pred = self.model(self.input_t)
def net_run(input_np): def net_run(input_np):

View file

@ -31,7 +31,7 @@ class QModel(ModelBase):
masked_training = True masked_training = True
models_opt_on_gpu = len(devices) >= 1 and all([dev.total_mem_gb >= 4 for dev in devices]) models_opt_on_gpu = len(devices) >= 1 and all([dev.total_mem_gb >= 4 for dev in devices])
models_opt_device = '/GPU:0' if models_opt_on_gpu and self.is_training else '/CPU:0' models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0'
optimizer_vars_on_cpu = models_opt_device=='/CPU:0' optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
input_ch = 3 input_ch = 3
@ -96,7 +96,7 @@ class QModel(ModelBase):
gpu_src_dst_loss_gvs = [] gpu_src_dst_loss_gvs = []
for gpu_id in range(gpu_count): for gpu_id in range(gpu_count):
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ): with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu ) batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
with tf.device(f'/CPU:0'): with tf.device(f'/CPU:0'):
# slice on CPU, otherwise all batch data will be transfered to GPU first # slice on CPU, otherwise all batch data will be transfered to GPU first
@ -190,7 +190,7 @@ class QModel(ModelBase):
self.AE_view = AE_view self.AE_view = AE_view
else: else:
# Initializing merge function # Initializing merge function
with tf.device( f'/GPU:0' if len(devices) != 0 else f'/CPU:0'): with tf.device( nn.tf_default_device_name if len(devices) != 0 else f'/CPU:0'):
gpu_dst_code = self.inter(self.encoder(self.warped_dst)) gpu_dst_code = self.inter(self.encoder(self.warped_dst))
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code) gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)
_, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code) _, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)

View file

@ -235,9 +235,10 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
ct_mode = self.options['ct_mode'] ct_mode = self.options['ct_mode']
if ct_mode == 'none': if ct_mode == 'none':
ct_mode = None ct_mode = None
models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu'] models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu']
models_opt_device = '/GPU:0' if models_opt_on_gpu and self.is_training else '/CPU:0' models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0'
optimizer_vars_on_cpu = models_opt_device=='/CPU:0' optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
input_ch=3 input_ch=3
@ -336,7 +337,6 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
bs_per_gpu = max(1, self.get_batch_size() // gpu_count) bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
self.set_batch_size( gpu_count*bs_per_gpu) self.set_batch_size( gpu_count*bs_per_gpu)
# Compute losses per GPU # Compute losses per GPU
gpu_pred_src_src_list = [] gpu_pred_src_src_list = []
gpu_pred_dst_dst_list = [] gpu_pred_dst_dst_list = []
@ -350,9 +350,9 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_G_loss_gvs = [] gpu_G_loss_gvs = []
gpu_D_code_loss_gvs = [] gpu_D_code_loss_gvs = []
gpu_D_src_dst_loss_gvs = [] gpu_D_src_dst_loss_gvs = []
for gpu_id in range(gpu_count): for gpu_id in range(gpu_count):
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ): with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
with tf.device(f'/CPU:0'): with tf.device(f'/CPU:0'):
# slice on CPU, otherwise all batch data will be transfered to GPU first # slice on CPU, otherwise all batch data will be transfered to GPU first
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu ) batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
@ -360,10 +360,10 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:] gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
gpu_target_src = self.target_src [batch_slice,:,:,:] gpu_target_src = self.target_src [batch_slice,:,:,:]
gpu_target_dst = self.target_dst [batch_slice,:,:,:] gpu_target_dst = self.target_dst [batch_slice,:,:,:]
gpu_target_srcm = self.target_srcm[batch_slice,:,:,:] gpu_target_srcm = self.target_srcm[batch_slice,:,:,:]
gpu_target_srcm_em = self.target_srcm_em[batch_slice,:,:,:] gpu_target_srcm_em = self.target_srcm_em[batch_slice,:,:,:]
gpu_target_dstm = self.target_dstm[batch_slice,:,:,:] gpu_target_dstm = self.target_dstm[batch_slice,:,:,:]
gpu_target_dstm_em = self.target_dstm_em[batch_slice,:,:,:] gpu_target_dstm_em = self.target_dstm_em[batch_slice,:,:,:]
# process model tensors # process model tensors
if 'df' in archi_type: if 'df' in archi_type:
@ -571,7 +571,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
self.AE_view = AE_view self.AE_view = AE_view
else: else:
# Initializing merge function # Initializing merge function
with tf.device( f'/GPU:0' if len(devices) != 0 else f'/CPU:0'): with tf.device( nn.tf_default_device_name if len(devices) != 0 else f'/CPU:0'):
if 'df' in archi_type: if 'df' in archi_type:
gpu_dst_code = self.inter(self.encoder(self.warped_dst)) gpu_dst_code = self.inter(self.encoder(self.warped_dst))
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code) gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)

View file

@ -52,7 +52,7 @@ class XSegModel(ModelBase):
'head' : FaceType.HEAD}[ self.options['face_type'] ] 'head' : FaceType.HEAD}[ self.options['face_type'] ]
place_model_on_cpu = len(devices) == 0 place_model_on_cpu = len(devices) == 0
models_opt_device = '/CPU:0' if place_model_on_cpu else '/GPU:0' models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
bgr_shape = nn.get4Dshape(resolution,resolution,3) bgr_shape = nn.get4Dshape(resolution,resolution,3)
mask_shape = nn.get4Dshape(resolution,resolution,1) mask_shape = nn.get4Dshape(resolution,resolution,1)
@ -83,7 +83,7 @@ class XSegModel(ModelBase):
for gpu_id in range(gpu_count): for gpu_id in range(gpu_count):
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ): with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
with tf.device(f'/CPU:0'): with tf.device(f'/CPU:0'):
# slice on CPU, otherwise all batch data will be transfered to GPU first # slice on CPU, otherwise all batch data will be transfered to GPU first
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu ) batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )