mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
added AMD/Intel cards support via DirectX12 ( DirectML backend )
This commit is contained in:
parent
fc4a49c3e7
commit
fdb143ff47
7 changed files with 166 additions and 116 deletions
|
@ -1,12 +1,19 @@
|
|||
import sys
|
||||
import ctypes
|
||||
import os
|
||||
import multiprocessing
|
||||
import json
|
||||
import time
|
||||
from pathlib import Path
|
||||
from core.interact import interact as io
|
||||
|
||||
|
||||
class Device(object):
|
||||
def __init__(self, index, name, total_mem, free_mem, cc=0):
|
||||
def __init__(self, index, tf_dev_type, name, total_mem, free_mem):
|
||||
self.index = index
|
||||
self.tf_dev_type = tf_dev_type
|
||||
self.name = name
|
||||
self.cc = cc
|
||||
|
||||
self.total_mem = total_mem
|
||||
self.total_mem_gb = total_mem / 1024**3
|
||||
self.free_mem = free_mem
|
||||
|
@ -82,12 +89,134 @@ class Devices(object):
|
|||
result.append (device)
|
||||
return Devices(result)
|
||||
|
||||
@staticmethod
|
||||
def _get_tf_devices_proc(q : multiprocessing.Queue):
|
||||
|
||||
compute_cache_path = Path(os.environ['APPDATA']) / 'NVIDIA' / ('ComputeCache_ALL')
|
||||
os.environ['CUDA_CACHE_PATH'] = str(compute_cache_path)
|
||||
if not compute_cache_path.exists():
|
||||
io.log_info("Caching GPU kernels...")
|
||||
compute_cache_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
import tensorflow
|
||||
|
||||
tf_version = tensorflow.version.VERSION
|
||||
#if tf_version is None:
|
||||
# tf_version = tensorflow.version.GIT_VERSION
|
||||
if tf_version[0] == 'v':
|
||||
tf_version = tf_version[1:]
|
||||
if tf_version[0] == '2':
|
||||
tf = tensorflow.compat.v1
|
||||
else:
|
||||
tf = tensorflow
|
||||
|
||||
import logging
|
||||
# Disable tensorflow warnings
|
||||
tf_logger = logging.getLogger('tensorflow')
|
||||
tf_logger.setLevel(logging.ERROR)
|
||||
|
||||
from tensorflow.python.client import device_lib
|
||||
|
||||
devices = []
|
||||
|
||||
physical_devices = device_lib.list_local_devices()
|
||||
physical_devices_f = {}
|
||||
for dev in physical_devices:
|
||||
dev_type = dev.device_type
|
||||
dev_tf_name = dev.name
|
||||
dev_tf_name = dev_tf_name[ dev_tf_name.index(dev_type) : ]
|
||||
|
||||
dev_idx = int(dev_tf_name.split(':')[-1])
|
||||
|
||||
if dev_type in ['GPU','DML']:
|
||||
dev_name = dev_tf_name
|
||||
|
||||
dev_desc = dev.physical_device_desc
|
||||
if len(dev_desc) != 0:
|
||||
if dev_desc[0] == '{':
|
||||
dev_desc_json = json.loads(dev_desc)
|
||||
dev_desc_json_name = dev_desc_json.get('name',None)
|
||||
if dev_desc_json_name is not None:
|
||||
dev_name = dev_desc_json_name
|
||||
else:
|
||||
for param, value in ( v.split(':') for v in dev_desc.split(',') ):
|
||||
param = param.strip()
|
||||
value = value.strip()
|
||||
if param == 'name':
|
||||
dev_name = value
|
||||
break
|
||||
|
||||
physical_devices_f[dev_idx] = (dev_type, dev_name, dev.memory_limit)
|
||||
|
||||
q.put(physical_devices_f)
|
||||
time.sleep(0.1)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def initialize_main_env():
|
||||
os.environ['NN_DEVICES_INITIALIZED'] = '1'
|
||||
os.environ['NN_DEVICES_COUNT'] = '0'
|
||||
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 0:
|
||||
return
|
||||
|
||||
if 'CUDA_VISIBLE_DEVICES' in os.environ.keys():
|
||||
os.environ.pop('CUDA_VISIBLE_DEVICES')
|
||||
|
||||
os.environ['CUDA_CACHE_MAXSIZE'] = '2147483647'
|
||||
os.environ['TF_MIN_GPU_MULTIPROCESSOR_COUNT'] = '2'
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # tf log errors only
|
||||
|
||||
q = multiprocessing.Queue()
|
||||
p = multiprocessing.Process(target=Devices._get_tf_devices_proc, args=(q,), daemon=True)
|
||||
p.start()
|
||||
p.join()
|
||||
|
||||
visible_devices = q.get()
|
||||
|
||||
os.environ['NN_DEVICES_INITIALIZED'] = '1'
|
||||
os.environ['NN_DEVICES_COUNT'] = str(len(visible_devices))
|
||||
|
||||
for i in visible_devices:
|
||||
dev_type, name, total_mem = visible_devices[i]
|
||||
|
||||
os.environ[f'NN_DEVICE_{i}_TF_DEV_TYPE'] = dev_type
|
||||
os.environ[f'NN_DEVICE_{i}_NAME'] = name
|
||||
os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(total_mem)
|
||||
os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(total_mem)
|
||||
|
||||
|
||||
|
||||
@staticmethod
|
||||
def getDevices():
|
||||
if Devices.all_devices is None:
|
||||
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 1:
|
||||
raise Exception("nn devices are not initialized. Run initialize_main_env() in main process.")
|
||||
devices = []
|
||||
for i in range ( int(os.environ['NN_DEVICES_COUNT']) ):
|
||||
devices.append ( Device(index=i,
|
||||
tf_dev_type=os.environ[f'NN_DEVICE_{i}_TF_DEV_TYPE'],
|
||||
name=os.environ[f'NN_DEVICE_{i}_NAME'],
|
||||
total_mem=int(os.environ[f'NN_DEVICE_{i}_TOTAL_MEM']),
|
||||
free_mem=int(os.environ[f'NN_DEVICE_{i}_FREE_MEM']), )
|
||||
)
|
||||
Devices.all_devices = Devices(devices)
|
||||
|
||||
return Devices.all_devices
|
||||
|
||||
"""
|
||||
|
||||
|
||||
# {'name' : name.split(b'\0', 1)[0].decode(),
|
||||
# 'total_mem' : totalMem.value
|
||||
# }
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
return
|
||||
|
||||
|
||||
|
||||
|
||||
min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35))
|
||||
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
|
||||
for libname in libnames:
|
||||
|
@ -139,70 +268,4 @@ class Devices(object):
|
|||
os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(device['total_mem'])
|
||||
os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(device['free_mem'])
|
||||
os.environ[f'NN_DEVICE_{i}_CC'] = str(device['cc'])
|
||||
|
||||
@staticmethod
|
||||
def getDevices():
|
||||
if Devices.all_devices is None:
|
||||
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 1:
|
||||
raise Exception("nn devices are not initialized. Run initialize_main_env() in main process.")
|
||||
devices = []
|
||||
for i in range ( int(os.environ['NN_DEVICES_COUNT']) ):
|
||||
devices.append ( Device(index=i,
|
||||
name=os.environ[f'NN_DEVICE_{i}_NAME'],
|
||||
total_mem=int(os.environ[f'NN_DEVICE_{i}_TOTAL_MEM']),
|
||||
free_mem=int(os.environ[f'NN_DEVICE_{i}_FREE_MEM']),
|
||||
cc=int(os.environ[f'NN_DEVICE_{i}_CC']) ))
|
||||
Devices.all_devices = Devices(devices)
|
||||
|
||||
return Devices.all_devices
|
||||
|
||||
"""
|
||||
if Devices.all_devices is None:
|
||||
min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35))
|
||||
|
||||
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
|
||||
for libname in libnames:
|
||||
try:
|
||||
cuda = ctypes.CDLL(libname)
|
||||
except:
|
||||
continue
|
||||
else:
|
||||
break
|
||||
else:
|
||||
return Devices([])
|
||||
|
||||
nGpus = ctypes.c_int()
|
||||
name = b' ' * 200
|
||||
cc_major = ctypes.c_int()
|
||||
cc_minor = ctypes.c_int()
|
||||
freeMem = ctypes.c_size_t()
|
||||
totalMem = ctypes.c_size_t()
|
||||
|
||||
result = ctypes.c_int()
|
||||
device = ctypes.c_int()
|
||||
context = ctypes.c_void_p()
|
||||
error_str = ctypes.c_char_p()
|
||||
|
||||
devices = []
|
||||
|
||||
if cuda.cuInit(0) == 0 and \
|
||||
cuda.cuDeviceGetCount(ctypes.byref(nGpus)) == 0:
|
||||
for i in range(nGpus.value):
|
||||
if cuda.cuDeviceGet(ctypes.byref(device), i) != 0 or \
|
||||
cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device) != 0 or \
|
||||
cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device) != 0:
|
||||
continue
|
||||
|
||||
if cuda.cuCtxCreate_v2(ctypes.byref(context), 0, device) == 0:
|
||||
if cuda.cuMemGetInfo_v2(ctypes.byref(freeMem), ctypes.byref(totalMem)) == 0:
|
||||
cc = cc_major.value * 10 + cc_minor.value
|
||||
if cc >= min_cc:
|
||||
devices.append ( Device(index=i,
|
||||
name=name.split(b'\0', 1)[0].decode(),
|
||||
total_mem=totalMem.value,
|
||||
free_mem=freeMem.value,
|
||||
cc=cc) )
|
||||
cuda.cuCtxDetach(context)
|
||||
Devices.all_devices = Devices(devices)
|
||||
return Devices.all_devices
|
||||
"""
|
|
@ -33,8 +33,8 @@ class nn():
|
|||
tf = None
|
||||
tf_sess = None
|
||||
tf_sess_config = None
|
||||
tf_default_device = None
|
||||
|
||||
tf_default_device_name = None
|
||||
|
||||
data_format = None
|
||||
conv2d_ch_axis = None
|
||||
conv2d_spatial_axes = None
|
||||
|
@ -50,9 +50,6 @@ class nn():
|
|||
nn.setCurrentDeviceConfig(device_config)
|
||||
|
||||
# Manipulate environment variables before import tensorflow
|
||||
|
||||
if 'CUDA_VISIBLE_DEVICES' in os.environ.keys():
|
||||
os.environ.pop('CUDA_VISIBLE_DEVICES')
|
||||
|
||||
first_run = False
|
||||
if len(device_config.devices) != 0:
|
||||
|
@ -68,22 +65,19 @@ class nn():
|
|||
compute_cache_path = Path(os.environ['APPDATA']) / 'NVIDIA' / ('ComputeCache' + devices_str)
|
||||
if not compute_cache_path.exists():
|
||||
first_run = True
|
||||
compute_cache_path.mkdir(parents=True, exist_ok=True)
|
||||
os.environ['CUDA_CACHE_PATH'] = str(compute_cache_path)
|
||||
|
||||
os.environ['TF_MIN_GPU_MULTIPROCESSOR_COUNT'] = '2'
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # tf log errors only
|
||||
|
||||
|
||||
if first_run:
|
||||
io.log_info("Caching GPU kernels...")
|
||||
|
||||
import tensorflow
|
||||
|
||||
tf_version = getattr(tensorflow,'VERSION', None)
|
||||
if tf_version is None:
|
||||
tf_version = tensorflow.version.GIT_VERSION
|
||||
if tf_version[0] == 'v':
|
||||
tf_version = tf_version[1:]
|
||||
|
||||
|
||||
tf_version = tensorflow.version.VERSION
|
||||
#if tf_version is None:
|
||||
# tf_version = tensorflow.version.GIT_VERSION
|
||||
if tf_version[0] == 'v':
|
||||
tf_version = tf_version[1:]
|
||||
if tf_version[0] == '2':
|
||||
tf = tensorflow.compat.v1
|
||||
else:
|
||||
|
@ -108,13 +102,14 @@ class nn():
|
|||
|
||||
# Configure tensorflow session-config
|
||||
if len(device_config.devices) == 0:
|
||||
nn.tf_default_device = "/CPU:0"
|
||||
config = tf.ConfigProto(device_count={'GPU': 0})
|
||||
nn.tf_default_device_name = '/CPU:0'
|
||||
else:
|
||||
nn.tf_default_device = "/GPU:0"
|
||||
nn.tf_default_device_name = f'/{device_config.devices[0].tf_dev_type}:0'
|
||||
|
||||
config = tf.ConfigProto()
|
||||
config.gpu_options.visible_device_list = ','.join([str(device.index) for device in device_config.devices])
|
||||
|
||||
|
||||
config.gpu_options.force_gpu_compatible = True
|
||||
config.gpu_options.allow_growth = True
|
||||
nn.tf_sess_config = config
|
||||
|
@ -202,14 +197,6 @@ class nn():
|
|||
nn.tf_sess.close()
|
||||
nn.tf_sess = None
|
||||
|
||||
@staticmethod
|
||||
def get_current_device():
|
||||
# Undocumented access to last tf.device(...)
|
||||
objs = nn.tf.get_default_graph()._device_function_stack.peek_objs()
|
||||
if len(objs) != 0:
|
||||
return objs[0].display_name
|
||||
return nn.tf_default_device
|
||||
|
||||
@staticmethod
|
||||
def ask_choose_device_idxs(choose_only_one=False, allow_cpu=True, suggest_best_multi_gpu=False, suggest_all_gpu=False):
|
||||
devices = Devices.getDevices()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue