mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
SAE: added option "simple optimizer" allows to train bigger networks on same VRAM
nnlib: added DFLOptimizer is my own optimizer
This commit is contained in:
parent
3bad8dd8ec
commit
fd3b9add2f
2 changed files with 30 additions and 20 deletions
|
@ -72,7 +72,7 @@ RandomNormal = keras.initializers.RandomNormal
|
|||
Model = keras.models.Model
|
||||
|
||||
Adam = keras.optimizers.Adam
|
||||
FastAdam = nnlib.FastAdam
|
||||
DFLOptimizer = nnlib.DFLOptimizer
|
||||
|
||||
modelify = nnlib.modelify
|
||||
gaussian_blur = nnlib.gaussian_blur
|
||||
|
@ -434,16 +434,14 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
|||
return dict(list(base_config.items()) + list(config.items()))
|
||||
nnlib.Scale = Scale
|
||||
|
||||
class FastAdam(keras.optimizers.Optimizer):
|
||||
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, iterations=0, **kwargs):
|
||||
super(FastAdam, self).__init__(**kwargs)
|
||||
class DFLOptimizer(keras.optimizers.Optimizer):
|
||||
def __init__(self, lr=0.001, **kwargs):
|
||||
super(DFLOptimizer, self).__init__(**kwargs)
|
||||
with K.name_scope(self.__class__.__name__):
|
||||
self.iterations = K.variable(iterations, dtype='int64', name='iterations')
|
||||
self.iterations = K.variable(0, dtype='int64', name='iterations')
|
||||
self.lr = K.variable(lr, name='lr')
|
||||
self.beta_1 = K.variable(beta_1, name='beta_1')
|
||||
self.beta_2 = K.variable(beta_2, name='beta_2')
|
||||
|
||||
self.epsilon = K.epsilon()
|
||||
self.beta_1 = K.variable(0.9, name='beta_1')
|
||||
self.beta_2 = K.variable(0.998, name='beta_2')
|
||||
|
||||
@keras.legacy.interfaces.legacy_get_updates_support
|
||||
def get_updates(self, loss, params):
|
||||
|
@ -451,16 +449,16 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
|||
self.updates = [K.update_add(self.iterations, 1)]
|
||||
|
||||
lr = self.lr
|
||||
t = K.cast(self.iterations, K.floatx()) + 1
|
||||
t = ( K.cast(self.iterations, K.floatx()) ) % 1000 + 1
|
||||
lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
|
||||
(1. - K.pow(self.beta_1, t)))
|
||||
self.weights = [self.iterations]
|
||||
|
||||
self.weights = []
|
||||
for p, g in zip(params, grads):
|
||||
|
||||
m_t = (1. - self.beta_1) * g
|
||||
v_t = (1. - self.beta_2) * K.square(g)
|
||||
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
|
||||
p_t = p - lr_t * m_t / (K.sqrt(v_t) + K.epsilon() )
|
||||
new_p = p_t
|
||||
|
||||
# Apply constraints.
|
||||
|
@ -471,15 +469,14 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
|||
return self.updates
|
||||
|
||||
def get_config(self):
|
||||
config = {'iterations': int(K.get_value(self.iterations)),
|
||||
'lr': float(K.get_value(self.lr)),
|
||||
config = {'lr': float(K.get_value(self.lr)),
|
||||
'beta_1': float(K.get_value(self.beta_1)),
|
||||
'beta_2': float(K.get_value(self.beta_2))
|
||||
}
|
||||
base_config = super(FastAdam, self).get_config()
|
||||
base_config = super(DFLOptimizer, self).get_config()
|
||||
return dict(list(base_config.items()) + list(config.items()))
|
||||
|
||||
nnlib.FastAdam = FastAdam
|
||||
nnlib.DFLOptimizer = DFLOptimizer
|
||||
|
||||
'''
|
||||
not implemented in plaidML
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue