Formatting

This commit is contained in:
Jeremy Hummel 2019-08-10 09:15:16 -07:00
commit fcbc8b125c

View file

@ -11,10 +11,11 @@ from utils import std_utils
from .device import device
from interact import interact as io
class nnlib(object):
device = device #forwards nnlib.devicelib to device in order to use nnlib as standalone lib
device = device # forwards nnlib.devicelib to device in order to use nnlib as standalone lib
DeviceConfig = device.Config
active_DeviceConfig = DeviceConfig() #default is one best GPU
active_DeviceConfig = DeviceConfig() # default is one best GPU
backend = ""
@ -28,7 +29,7 @@ class nnlib(object):
PML = None
PMLK = None
PMLTile= None
PMLTile = None
code_import_keras = None
code_import_keras_contrib = None
@ -36,14 +37,13 @@ class nnlib(object):
code_import_dlib = None
ResNet = None
UNet = None
UNetTemporalPredictor = None
NLayerDiscriminator = None
code_import_keras_string = \
"""
"""
keras = nnlib.keras
K = keras.backend
KL = keras.layers
@ -96,18 +96,18 @@ CAInitializerMP = nnlib.CAInitializerMP
#AddUniformNoise = nnlib.AddUniformNoise
"""
code_import_keras_contrib_string = \
"""
"""
keras_contrib = nnlib.keras_contrib
GroupNormalization = keras_contrib.layers.GroupNormalization
InstanceNormalization = keras_contrib.layers.InstanceNormalization
"""
code_import_dlib_string = \
"""
"""
dlib = nnlib.dlib
"""
code_import_all_string = \
"""
"""
DSSIMMSEMaskLoss = nnlib.DSSIMMSEMaskLoss
ResNet = nnlib.ResNet
UNet = nnlib.UNet
@ -115,7 +115,6 @@ UNetTemporalPredictor = nnlib.UNetTemporalPredictor
NLayerDiscriminator = nnlib.NLayerDiscriminator
"""
@staticmethod
def _import_tf(device_config):
if nnlib.tf is not None:
@ -130,7 +129,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
os.environ.pop('CUDA_VISIBLE_DEVICES')
os.environ['TF_MIN_GPU_MULTIPROCESSOR_COUNT'] = '2'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #tf log errors only
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # tf log errors only
import tensorflow as tf
nnlib.tf = tf
@ -140,12 +139,12 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
config = tf.ConfigProto()
if device_config.backend != "tensorflow-generic":
#tensorflow-generic is system with NVIDIA card, but w/o NVSMI
#so dont hide devices and let tensorflow to choose best card
# tensorflow-generic is system with NVIDIA card, but w/o NVSMI
# so dont hide devices and let tensorflow to choose best card
visible_device_list = ''
for idx in device_config.gpu_idxs:
visible_device_list += str(idx) + ','
config.gpu_options.visible_device_list=visible_device_list[:-1]
config.gpu_options.visible_device_list = visible_device_list[:-1]
config.gpu_options.force_gpu_compatible = True
config.gpu_options.allow_growth = device_config.allow_growth
@ -165,11 +164,12 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
nnlib._import_tf(device_config)
elif nnlib.backend == "plaidML":
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"
os.environ["PLAIDML_DEVICE_IDS"] = ",".join ( [ nnlib.device.getDeviceID(idx) for idx in device_config.gpu_idxs] )
os.environ["PLAIDML_DEVICE_IDS"] = ",".join(
[nnlib.device.getDeviceID(idx) for idx in device_config.gpu_idxs])
#if "tensorflow" in nnlib.backend:
# if "tensorflow" in nnlib.backend:
# nnlib.keras = nnlib.tf.keras
#else:
# else:
import keras as keras_
nnlib.keras = keras_
@ -191,7 +191,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
nnlib.keras.backend.set_image_data_format('channels_last')
nnlib.code_import_keras = compile (nnlib.code_import_keras_string,'','exec')
nnlib.code_import_keras = compile(nnlib.code_import_keras_string, '', 'exec')
nnlib.__initialize_keras_functions()
return nnlib.code_import_keras
@ -205,7 +205,8 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
def modelify(model_functor):
def func(tensor):
return keras.models.Model (tensor, model_functor(tensor))
return keras.models.Model(tensor, model_functor(tensor))
return func
nnlib.modelify = modelify
@ -223,17 +224,19 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
return kernel
gauss_kernel = make_kernel(radius)
gauss_kernel = gauss_kernel[:, :,np.newaxis, np.newaxis]
gauss_kernel = gauss_kernel[:, :, np.newaxis, np.newaxis]
def func(input):
inputs = [ input[:,:,:,i:i+1] for i in range( K.int_shape( input )[-1] ) ]
inputs = [input[:, :, :, i:i + 1] for i in range(K.int_shape(input)[-1])]
outputs = []
for i in range(len(inputs)):
outputs += [ K.conv2d( inputs[i] , K.constant(gauss_kernel) , strides=(1,1), padding="same") ]
outputs += [K.conv2d(inputs[i], K.constant(gauss_kernel), strides=(1, 1), padding="same")]
return K.concatenate(outputs, axis=-1)
return K.concatenate (outputs, axis=-1)
return func
nnlib.gaussian_blur = gaussian_blur
def style_loss(gaussian_blur_radius=0.0, loss_weight=1.0, wnd_size=0, step_size=1):
@ -246,36 +249,40 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
if content_nc != style_nc:
raise Exception("style_loss() content_nc != style_nc")
axes = [1,2]
axes = [1, 2]
c_mean, c_var = K.mean(content, axis=axes, keepdims=True), K.var(content, axis=axes, keepdims=True)
s_mean, s_var = K.mean(style, axis=axes, keepdims=True), K.var(style, axis=axes, keepdims=True)
c_std, s_std = K.sqrt(c_var + 1e-5), K.sqrt(s_var + 1e-5)
mean_loss = K.sum(K.square(c_mean-s_mean))
std_loss = K.sum(K.square(c_std-s_std))
mean_loss = K.sum(K.square(c_mean - s_mean))
std_loss = K.sum(K.square(c_std - s_std))
return (mean_loss + std_loss) * ( loss_weight / float(content_nc) )
return (mean_loss + std_loss) * (loss_weight / float(content_nc))
def func(target, style):
if wnd_size == 0:
if gaussian_blur_radius > 0.0:
return sd( gblur(target), gblur(style), loss_weight=loss_weight)
return sd(gblur(target), gblur(style), loss_weight=loss_weight)
else:
return sd( target, style, loss_weight=loss_weight )
return sd(target, style, loss_weight=loss_weight)
else:
#currently unused
# currently unused
if nnlib.tf is not None:
sh = K.int_shape(target)[1]
k = (sh-wnd_size) // step_size + 1
k = (sh - wnd_size) // step_size + 1
if gaussian_blur_radius > 0.0:
target, style = gblur(target), gblur(style)
target = nnlib.tf.image.extract_image_patches(target, [1,k,k,1], [1,1,1,1], [1,step_size,step_size,1], 'VALID')
style = nnlib.tf.image.extract_image_patches(style, [1,k,k,1], [1,1,1,1], [1,step_size,step_size,1], 'VALID')
return sd( target, style, loss_weight )
target = nnlib.tf.image.extract_image_patches(target, [1, k, k, 1], [1, 1, 1, 1],
[1, step_size, step_size, 1], 'VALID')
style = nnlib.tf.image.extract_image_patches(style, [1, k, k, 1], [1, 1, 1, 1],
[1, step_size, step_size, 1], 'VALID')
return sd(target, style, loss_weight)
if nnlib.PML is not None:
print ("Sorry, plaidML backend does not support style_loss")
print("Sorry, plaidML backend does not support style_loss")
return 0
return func
nnlib.style_loss = style_loss
def dssim(kernel_size=11, k1=0.01, k2=0.03, max_value=1.0):
@ -285,19 +292,19 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
ch = K.shape(y_pred)[-1]
def _fspecial_gauss(size, sigma):
#Function to mimic the 'fspecial' gaussian MATLAB function.
# Function to mimic the 'fspecial' gaussian MATLAB function.
coords = np.arange(0, size, dtype=K.floatx())
coords -= (size - 1 ) / 2.0
g = coords**2
g *= ( -0.5 / (sigma**2) )
g = np.reshape (g, (1,-1)) + np.reshape(g, (-1,1) )
g = K.constant ( np.reshape (g, (1,-1)) )
coords -= (size - 1) / 2.0
g = coords ** 2
g *= (-0.5 / (sigma ** 2))
g = np.reshape(g, (1, -1)) + np.reshape(g, (-1, 1))
g = K.constant(np.reshape(g, (1, -1)))
g = K.softmax(g)
g = K.reshape (g, (size, size, 1, 1))
g = K.tile (g, (1,1,ch,1))
g = K.reshape(g, (size, size, 1, 1))
g = K.tile(g, (1, 1, ch, 1))
return g
kernel = _fspecial_gauss(kernel_size,1.5)
kernel = _fspecial_gauss(kernel_size, 1.5)
def reducer(x):
return K.depthwise_conv2d(x, kernel, strides=(1, 1), padding='valid')
@ -313,11 +320,11 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
num1 = reducer(y_true * y_pred) * 2.0
den1 = reducer(K.square(y_true) + K.square(y_pred))
c2 *= 1.0 #compensation factor
c2 *= 1.0 # compensation factor
cs = (num1 - num0 + c2) / (den1 - den0 + c2)
ssim_val = K.mean(luminance * cs, axis=(-3, -2) )
return(1.0 - ssim_val ) / 2.0
ssim_val = K.mean(luminance * cs, axis=(-3, -2))
return (1.0 - ssim_val) / 2.0
return func
@ -325,7 +332,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
if 'tensorflow' in backend:
class PixelShuffler(keras.layers.Layer):
def __init__(self, size=(2, 2), data_format='channels_last', **kwargs):
def __init__(self, size=(2, 2), data_format='channels_last', **kwargs):
super(PixelShuffler, self).__init__(**kwargs)
self.data_format = data_format
self.size = size
@ -344,8 +351,8 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
def compute_output_shape(self, input_shape):
if len(input_shape) != 4:
raise ValueError('Inputs should have rank ' +
str(4) +
'; Received input shape:', str(input_shape))
str(4) +
'; Received input shape:', str(input_shape))
if self.data_format == 'channels_first':
height = input_shape[2] * self.size[0] if input_shape[2] is not None else None
@ -375,7 +382,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
def get_config(self):
config = {'size': self.size,
'data_format': self.data_format}
'data_format': self.data_format}
base_config = super(PixelShuffler, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@ -417,8 +424,8 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
def compute_output_shape(self, input_shape):
if len(input_shape) != 4:
raise ValueError('Inputs should have rank ' +
str(4) +
'; Received input shape:', str(input_shape))
str(4) +
'; Received input shape:', str(input_shape))
if self.data_format == 'channels_first':
height = input_shape[2] * self.size[0] if input_shape[2] is not None else None
@ -448,7 +455,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
def get_config(self):
config = {'size': self.size,
'data_format': self.data_format}
'data_format': self.data_format}
base_config = super(PixelShuffler, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@ -461,6 +468,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
GAN Custom Scal Layer
Code borrows from https://github.com/flyyufelix/cnn_finetune
"""
def __init__(self, weights=None, axis=-1, gamma_init='zero', **kwargs):
self.axis = axis
self.gamma_init = keras.initializers.get(gamma_init)
@ -485,6 +493,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
config = {"axis": self.axis}
base_config = super(Scale, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.Scale = Scale
class Adam(keras.optimizers.Optimizer):
@ -540,7 +549,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
t = K.cast(self.iterations, K.floatx()) + 1
lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
(1. - K.pow(self.beta_1, t)))
(1. - K.pow(self.beta_1, t)))
e = K.tf.device("/cpu:0") if self.tf_cpu_mode > 0 else None
if e: e.__enter__()
@ -590,15 +599,18 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
'amsgrad': self.amsgrad}
base_config = super(Adam, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.Adam = Adam
def CAInitializerMP( conv_weights_list ):
#Convolution Aware Initialization https://arxiv.org/abs/1702.06295
result = CAInitializerMPSubprocessor ( [ (i, K.int_shape(conv_weights)) for i, conv_weights in enumerate(conv_weights_list) ], K.floatx(), K.image_data_format() ).run()
def CAInitializerMP(conv_weights_list):
# Convolution Aware Initialization https://arxiv.org/abs/1702.06295
result = CAInitializerMPSubprocessor(
[(i, K.int_shape(conv_weights)) for i, conv_weights in enumerate(conv_weights_list)], K.floatx(),
K.image_data_format()).run()
for idx, weights in result:
K.set_value ( conv_weights_list[idx], weights )
nnlib.CAInitializerMP = CAInitializerMP
K.set_value(conv_weights_list[idx], weights)
nnlib.CAInitializerMP = CAInitializerMP
if backend == "plaidML":
class TileOP_ReflectionPadding2D(nnlib.PMLTile.Operation):
@ -607,7 +619,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
if input.shape.ndims == 4:
H, W = input.shape.dims[1:3]
if (type(H) == int and h_pad >= H) or \
(type(W) == int and w_pad >= W):
(type(W) == int and w_pad >= W):
raise ValueError("Paddings must be less than dimensions.")
c = """ function (I[B, H, W, C] ) -> (O) {{
@ -637,14 +649,15 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
c += "O = TVB; }"
inp_dims = input.shape.dims
out_dims = (inp_dims[0], inp_dims[1]+h_pad*2, inp_dims[2]+w_pad*2, inp_dims[3])
out_dims = (inp_dims[0], inp_dims[1] + h_pad * 2, inp_dims[2] + w_pad * 2, inp_dims[3])
else:
raise NotImplemented
else:
raise NotImplemented
super(TileOP_ReflectionPadding2D, self).__init__(c, [('I', input) ],
[('O', nnlib.PMLTile.Shape(input.shape.dtype, out_dims ) )])
super(TileOP_ReflectionPadding2D, self).__init__(c, [('I', input)],
[('O', nnlib.PMLTile.Shape(input.shape.dtype,
out_dims))])
class ReflectionPadding2D(keras.layers.Layer):
def __init__(self, padding=(1, 1), **kwargs):
@ -657,20 +670,20 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
return (s[0], s[1] + 2 * self.padding[0], s[2] + 2 * self.padding[1], s[3])
def call(self, x, mask=None):
w_pad,h_pad = self.padding
w_pad, h_pad = self.padding
if "tensorflow" in backend:
return K.tf.pad(x, [[0,0], [h_pad,h_pad], [w_pad,w_pad], [0,0] ], 'REFLECT')
return K.tf.pad(x, [[0, 0], [h_pad, h_pad], [w_pad, w_pad], [0, 0]], 'REFLECT')
elif backend == "plaidML":
return TileOP_ReflectionPadding2D.function(x, self.padding[0], self.padding[1])
else:
if K.image_data_format() == 'channels_last':
if x.shape.ndims == 4:
w = K.concatenate ([ x[:,:,w_pad:0:-1,:],
x,
x[:,:,-2:-w_pad-2:-1,:] ], axis=2 )
h = K.concatenate ([ w[:,h_pad:0:-1,:,:],
w,
w[:,-2:-h_pad-2:-1,:,:] ], axis=1 )
w = K.concatenate([x[:, :, w_pad:0:-1, :],
x,
x[:, :, -2:-w_pad - 2:-1, :]], axis=2)
h = K.concatenate([w[:, h_pad:0:-1, :, :],
w,
w[:, -2:-h_pad - 2:-1, :, :]], axis=1)
return h
else:
raise NotImplemented
@ -680,43 +693,45 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
nnlib.ReflectionPadding2D = ReflectionPadding2D
class Conv2D():
def __init__ (self, *args, **kwargs):
def __init__(self, *args, **kwargs):
self.reflect_pad = False
padding = kwargs.get('padding','')
padding = kwargs.get('padding', '')
if padding == 'zero':
kwargs['padding'] = 'same'
if padding == 'reflect':
kernel_size = kwargs['kernel_size']
if (kernel_size % 2) == 1:
self.pad = (kernel_size // 2,)*2
self.pad = (kernel_size // 2,) * 2
kwargs['padding'] = 'valid'
self.reflect_pad = True
self.func = keras.layers.Conv2D (*args, **kwargs)
self.func = keras.layers.Conv2D(*args, **kwargs)
def __call__(self,x):
def __call__(self, x):
if self.reflect_pad:
x = ReflectionPadding2D( self.pad ) (x)
x = ReflectionPadding2D(self.pad)(x)
return self.func(x)
nnlib.Conv2D = Conv2D
class Conv2DTranspose():
def __init__ (self, *args, **kwargs):
def __init__(self, *args, **kwargs):
self.reflect_pad = False
padding = kwargs.get('padding','')
padding = kwargs.get('padding', '')
if padding == 'zero':
kwargs['padding'] = 'same'
if padding == 'reflect':
kernel_size = kwargs['kernel_size']
if (kernel_size % 2) == 1:
self.pad = (kernel_size // 2,)*2
self.pad = (kernel_size // 2,) * 2
kwargs['padding'] = 'valid'
self.reflect_pad = True
self.func = keras.layers.Conv2DTranspose (*args, **kwargs)
self.func = keras.layers.Conv2DTranspose(*args, **kwargs)
def __call__(self,x):
def __call__(self, x):
if self.reflect_pad:
x = ReflectionPadding2D( self.pad ) (x)
x = ReflectionPadding2D(self.pad)(x)
return self.func(x)
nnlib.Conv2DTranspose = Conv2DTranspose
@staticmethod
@ -727,14 +742,14 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
import keras_contrib as keras_contrib_
nnlib.keras_contrib = keras_contrib_
nnlib.__initialize_keras_contrib_functions()
nnlib.code_import_keras_contrib = compile (nnlib.code_import_keras_contrib_string,'','exec')
nnlib.code_import_keras_contrib = compile(nnlib.code_import_keras_contrib_string, '', 'exec')
@staticmethod
def __initialize_keras_contrib_functions():
pass
@staticmethod
def import_dlib( device_config = None):
def import_dlib(device_config=None):
if nnlib.dlib is not None:
return nnlib.code_import_dlib
@ -743,10 +758,10 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
if not device_config.cpu_only and "tensorflow" in device_config.backend and len(device_config.gpu_idxs) > 0:
nnlib.dlib.cuda.set_device(device_config.gpu_idxs[0])
nnlib.code_import_dlib = compile (nnlib.code_import_dlib_string,'','exec')
nnlib.code_import_dlib = compile(nnlib.code_import_dlib_string, '', 'exec')
@staticmethod
def import_all(device_config = None):
def import_all(device_config=None):
if nnlib.code_import_all is None:
if device_config is None:
device_config = nnlib.active_DeviceConfig
@ -755,32 +770,33 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
nnlib.import_keras(device_config)
nnlib.import_keras_contrib(device_config)
nnlib.code_import_all = compile (nnlib.code_import_keras_string + '\n'
nnlib.code_import_all = compile(nnlib.code_import_keras_string + '\n'
+ nnlib.code_import_keras_contrib_string
+ nnlib.code_import_all_string,'','exec')
+ nnlib.code_import_all_string, '', 'exec')
nnlib.__initialize_all_functions()
return nnlib.code_import_all
@staticmethod
def __initialize_all_functions():
exec (nnlib.import_keras(nnlib.active_DeviceConfig), locals(), globals())
exec (nnlib.import_keras_contrib(nnlib.active_DeviceConfig), locals(), globals())
exec(nnlib.import_keras(nnlib.active_DeviceConfig), locals(), globals())
exec(nnlib.import_keras_contrib(nnlib.active_DeviceConfig), locals(), globals())
class DSSIMMSEMaskLoss(object):
def __init__(self, mask, is_mse=False):
self.mask = mask
self.is_mse = is_mse
def __call__(self,y_true, y_pred):
def __call__(self, y_true, y_pred):
total_loss = None
mask = self.mask
if self.is_mse:
blur_mask = gaussian_blur(max(1, K.int_shape(mask)[1] // 64))(mask)
return K.mean ( 50*K.square( y_true*blur_mask - y_pred*blur_mask ) )
return K.mean(50 * K.square(y_true * blur_mask - y_pred * blur_mask))
else:
return 10*dssim() (y_true*mask, y_pred*mask)
nnlib.DSSIMMSEMaskLoss = DSSIMMSEMaskLoss
return 10 * dssim()(y_true * mask, y_pred * mask)
nnlib.DSSIMMSEMaskLoss = DSSIMMSEMaskLoss
'''
def ResNet(output_nc, use_batch_norm, ngf=64, n_blocks=6, use_dropout=False):
@ -967,6 +983,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
return func
nnlib.NLayerDiscriminator = NLayerDiscriminator
'''
@staticmethod
def finalize_all():
if nnlib.keras_contrib is not None:
@ -984,24 +1001,24 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
class CAInitializerMPSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
# override
def on_initialize(self, client_dict):
self.floatx = client_dict['floatx']
self.data_format = client_dict['data_format']
#override
# override
def process_data(self, data):
idx, shape = data
weights = CAGenerateWeights (shape, self.floatx, self.data_format)
weights = CAGenerateWeights(shape, self.floatx, self.data_format)
return idx, weights
#override
def get_data_name (self, data):
#return string identificator of your data
# override
def get_data_name(self, data):
# return string identificator of your data
return "undefined"
#override
def __init__(self, idx_shapes_list, floatx, data_format ):
# override
def __init__(self, idx_shapes_list, floatx, data_format):
self.idx_shapes_list = idx_shapes_list
self.floatx = floatx
@ -1010,39 +1027,39 @@ class CAInitializerMPSubprocessor(Subprocessor):
self.result = []
super().__init__('CAInitializerMP', CAInitializerMPSubprocessor.Cli)
#override
# override
def on_clients_initialized(self):
io.progress_bar ("Initializing CA weights", len (self.idx_shapes_list))
io.progress_bar("Initializing CA weights", len(self.idx_shapes_list))
#override
# override
def on_clients_finalized(self):
io.progress_bar_close()
#override
# override
def process_info_generator(self):
for i in range(multiprocessing.cpu_count()):
yield 'CPU%d' % (i), {}, {'device_idx': i,
'device_name': 'CPU%d' % (i),
'floatx' : self.floatx,
'data_format' : self.data_format
'floatx': self.floatx,
'data_format': self.data_format
}
#override
# override
def get_data(self, host_dict):
if len (self.idx_shapes_list) > 0:
if len(self.idx_shapes_list) > 0:
return self.idx_shapes_list.pop(0)
return None
#override
def on_data_return (self, host_dict, data):
# override
def on_data_return(self, host_dict, data):
self.idx_shapes_list.insert(0, data)
#override
def on_result (self, host_dict, data, result):
self.result.append ( result )
# override
def on_result(self, host_dict, data, result):
self.result.append(result)
io.progress_bar_inc(1)
#override
# override
def get_result(self):
return self.result