added new extractor: S3FD,

all extractors now produce less false-positive faces
This commit is contained in:
iperov 2019-03-10 23:18:10 +04:00
parent 9440224556
commit fbf39d2727
10 changed files with 83 additions and 112 deletions

View file

@ -3,101 +3,18 @@ import os
import cv2
from pathlib import Path
def transform(point, center, scale, resolution):
pt = np.array ( [point[0], point[1], 1.0] )
h = 200.0 * scale
m = np.eye(3)
m[0,0] = resolution / h
m[1,1] = resolution / h
m[0,2] = resolution * ( -center[0] / h + 0.5 )
m[1,2] = resolution * ( -center[1] / h + 0.5 )
m = np.linalg.inv(m)
return np.matmul (m, pt)[0:2]
def crop(image, center, scale, resolution=256.0):
ul = transform([1, 1], center, scale, resolution).astype( np.int )
br = transform([resolution, resolution], center, scale, resolution).astype( np.int )
if image.ndim > 2:
newDim = np.array([br[1] - ul[1], br[0] - ul[0], image.shape[2]], dtype=np.int32)
newImg = np.zeros(newDim, dtype=np.uint8)
else:
newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int)
newImg = np.zeros(newDim, dtype=np.uint8)
ht = image.shape[0]
wd = image.shape[1]
newX = np.array([max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32)
newY = np.array([max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32)
oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32)
oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32)
newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1] ] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :]
newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)), interpolation=cv2.INTER_LINEAR)
return newImg
def get_pts_from_predict(a, center, scale):
b = a.reshape ( (a.shape[0], a.shape[1]*a.shape[2]) )
c = b.argmax(1).reshape ( (a.shape[0], 1) ).repeat(2, axis=1).astype(np.float)
c[:,0] %= a.shape[2]
c[:,1] = np.apply_along_axis ( lambda x: np.floor(x / a.shape[2]), 0, c[:,1] )
for i in range(a.shape[0]):
pX, pY = int(c[i,0]), int(c[i,1])
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
diff = np.array ( [a[i,pY,pX+1]-a[i,pY,pX-1], a[i,pY+1,pX]-a[i,pY-1,pX]] )
c[i] += np.sign(diff)*0.25
c += 0.5
return [ transform (c[i], center, scale, a.shape[2]) for i in range(a.shape[0]) ]
class LandmarksExtractor(object):
def __init__ (self, keras):
self.keras = keras
K = self.keras.backend
class TorchBatchNorm2D(self.keras.layers.Layer):
def __init__(self, axis=-1, momentum=0.99, epsilon=1e-3, **kwargs):
super(TorchBatchNorm2D, self).__init__(**kwargs)
self.supports_masking = True
self.axis = axis
self.momentum = momentum
self.epsilon = epsilon
def build(self, input_shape):
dim = input_shape[self.axis]
if dim is None:
raise ValueError('Axis ' + str(self.axis) + ' of ' 'input tensor should have a defined dimension ' 'but the layer received an input with shape ' + str(input_shape) + '.')
shape = (dim,)
self.gamma = self.add_weight(shape=shape, name='gamma', initializer='ones', regularizer=None, constraint=None)
self.beta = self.add_weight(shape=shape, name='beta', initializer='zeros', regularizer=None, constraint=None)
self.moving_mean = self.add_weight(shape=shape, name='moving_mean', initializer='zeros', trainable=False)
self.moving_variance = self.add_weight(shape=shape, name='moving_variance', initializer='ones', trainable=False)
self.built = True
def call(self, inputs, training=None):
input_shape = K.int_shape(inputs)
broadcast_shape = [1] * len(input_shape)
broadcast_shape[self.axis] = input_shape[self.axis]
broadcast_moving_mean = K.reshape(self.moving_mean, broadcast_shape)
broadcast_moving_variance = K.reshape(self.moving_variance, broadcast_shape)
broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
broadcast_beta = K.reshape(self.beta, broadcast_shape)
invstd = K.ones (shape=broadcast_shape, dtype='float32') / K.sqrt(broadcast_moving_variance + K.constant(self.epsilon, dtype='float32'))
return (inputs - broadcast_moving_mean) * invstd * broadcast_gamma + broadcast_beta
def get_config(self):
config = { 'axis': self.axis, 'momentum': self.momentum, 'epsilon': self.epsilon }
base_config = super(TorchBatchNorm2D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
self.TorchBatchNorm2D = TorchBatchNorm2D
def __enter__(self):
keras_model_path = Path(__file__).parent / "2DFAN-4.h5"
if not keras_model_path.exists():
return None
self.keras_model = self.keras.models.load_model ( str(keras_model_path), custom_objects={'TorchBatchNorm2D': self.TorchBatchNorm2D} )
self.keras_model = self.keras.models.load_model (str(keras_model_path))
return self
@ -116,13 +33,58 @@ class LandmarksExtractor(object):
center[1] -= (bottom - top) * 0.12
scale = (right - left + bottom - top) / 195.0
image = crop(input_image, center, scale).transpose ( (2,0,1) ).astype(np.float32) / 255.0
image = self.crop(input_image, center, scale).astype(np.float32)
image = np.expand_dims(image, 0)
predicted = self.keras_model.predict (image)
pts_img = get_pts_from_predict ( predicted[-1], center, scale)
predicted = self.keras_model.predict (image).transpose (0,3,1,2)
pts_img = self.get_pts_from_predict ( predicted[-1], center, scale)
pts_img = [ ( int(pt[0]), int(pt[1]) ) for pt in pts_img ]
landmarks.append ( ( (left, top, right, bottom),pts_img ) )
return landmarks
def transform(self, point, center, scale, resolution):
pt = np.array ( [point[0], point[1], 1.0] )
h = 200.0 * scale
m = np.eye(3)
m[0,0] = resolution / h
m[1,1] = resolution / h
m[0,2] = resolution * ( -center[0] / h + 0.5 )
m[1,2] = resolution * ( -center[1] / h + 0.5 )
m = np.linalg.inv(m)
return np.matmul (m, pt)[0:2]
def crop(self, image, center, scale, resolution=256.0):
ul = self.transform([1, 1], center, scale, resolution).astype( np.int )
br = self.transform([resolution, resolution], center, scale, resolution).astype( np.int )
if image.ndim > 2:
newDim = np.array([br[1] - ul[1], br[0] - ul[0], image.shape[2]], dtype=np.int32)
newImg = np.zeros(newDim, dtype=np.uint8)
else:
newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int)
newImg = np.zeros(newDim, dtype=np.uint8)
ht = image.shape[0]
wd = image.shape[1]
newX = np.array([max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32)
newY = np.array([max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32)
oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32)
oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32)
newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1] ] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :]
newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)), interpolation=cv2.INTER_LINEAR)
return newImg
def get_pts_from_predict(self, a, center, scale):
b = a.reshape ( (a.shape[0], a.shape[1]*a.shape[2]) )
c = b.argmax(1).reshape ( (a.shape[0], 1) ).repeat(2, axis=1).astype(np.float)
c[:,0] %= a.shape[2]
c[:,1] = np.apply_along_axis ( lambda x: np.floor(x / a.shape[2]), 0, c[:,1] )
for i in range(a.shape[0]):
pX, pY = int(c[i,0]), int(c[i,1])
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
diff = np.array ( [a[i,pY,pX+1]-a[i,pY,pX-1], a[i,pY+1,pX]-a[i,pY-1,pX]] )
c[i] += np.sign(diff)*0.25
c += 0.5
return [ self.transform (c[i], center, scale, a.shape[2]) for i in range(a.shape[0]) ]