mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-16 10:03:41 -07:00
H64, H128, DF, LIAEF128: added pixel loss option.
This commit is contained in:
parent
af3dd59f67
commit
f8e63970d2
5 changed files with 52 additions and 34 deletions
|
@ -37,7 +37,7 @@ class nnlib(object):
|
|||
modelify = None
|
||||
ReflectionPadding2D = None
|
||||
DSSIMLoss = None
|
||||
DSSIMMaskLoss = None
|
||||
DSSIMMSEMaskLoss = None
|
||||
PixelShuffler = None
|
||||
SubpixelUpscaler = None
|
||||
AddUniformNoise = None
|
||||
|
@ -101,7 +101,7 @@ Adam = keras.optimizers.Adam
|
|||
modelify = nnlib.modelify
|
||||
ReflectionPadding2D = nnlib.ReflectionPadding2D
|
||||
DSSIMLoss = nnlib.DSSIMLoss
|
||||
DSSIMMaskLoss = nnlib.DSSIMMaskLoss
|
||||
DSSIMMSEMaskLoss = nnlib.DSSIMMSEMaskLoss
|
||||
PixelShuffler = nnlib.PixelShuffler
|
||||
SubpixelUpscaler = nnlib.SubpixelUpscaler
|
||||
AddUniformNoise = nnlib.AddUniformNoise
|
||||
|
@ -417,7 +417,8 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
|||
tf = nnlib.tf
|
||||
keras = nnlib.keras
|
||||
K = keras.backend
|
||||
|
||||
exec (nnlib.code_import_tf, locals(), globals())
|
||||
|
||||
def modelify(model_functor):
|
||||
def func(tensor):
|
||||
return keras.models.Model (tensor, model_functor(tensor))
|
||||
|
@ -451,29 +452,21 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
|||
return (1.0 - tf.image.ssim ((y_true/2+0.5), (y_pred/2+0.5), 1.0)) / 2.0
|
||||
nnlib.DSSIMLoss = DSSIMLoss
|
||||
|
||||
class DSSIMMaskLoss(object):
|
||||
def __init__(self, mask_list, is_tanh=False):
|
||||
self.mask_list = mask_list
|
||||
self.is_tanh = is_tanh
|
||||
class DSSIMMSEMaskLoss(object):
|
||||
def __init__(self, mask, is_mse=False):
|
||||
self.mask = mask
|
||||
self.is_mse = is_mse
|
||||
|
||||
def __call__(self,y_true, y_pred):
|
||||
total_loss = None
|
||||
for mask in self.mask_list:
|
||||
|
||||
if not self.is_tanh:
|
||||
loss = (1.0 - (tf.image.ssim (y_true*mask, y_pred*mask, 1.0))) / 2.0
|
||||
else:
|
||||
loss = (1.0 - tf.image.ssim ( (y_true/2+0.5)*(mask/2+0.5), (y_pred/2+0.5)*(mask/2+0.5), 1.0)) / 2.0
|
||||
|
||||
loss = K.cast (loss, K.floatx())
|
||||
|
||||
if total_loss is None:
|
||||
total_loss = loss
|
||||
else:
|
||||
total_loss += loss
|
||||
|
||||
return total_loss
|
||||
nnlib.DSSIMMaskLoss = DSSIMMaskLoss
|
||||
|
||||
mask = self.mask
|
||||
if self.is_mse:
|
||||
blur_mask = tf_gaussian_blur(max(1, mask.get_shape().as_list()[1] // 32))(mask)
|
||||
return K.mean ( 100*K.square( y_true*blur_mask - y_pred*blur_mask ) )
|
||||
else:
|
||||
return (1.0 - (tf.image.ssim (y_true*mask, y_pred*mask, 1.0))) / 2.0
|
||||
nnlib.DSSIMMSEMaskLoss = DSSIMMSEMaskLoss
|
||||
|
||||
class PixelShuffler(keras.layers.Layer):
|
||||
def __init__(self, size=(2, 2), data_format=None, **kwargs):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue