refactoring. Added RecycleGAN for testing.

This commit is contained in:
iperov 2018-12-28 19:38:52 +04:00
parent 8686309417
commit f8824f9601
24 changed files with 1661 additions and 1505 deletions

View file

@ -2,10 +2,7 @@ import numpy as np
import cv2
from models import ModelBase
from samples import *
from nnlib import tf_dssim
from nnlib import DSSIMLossClass
from nnlib import conv
from nnlib import upscale
from nnlib import nnlib
class Model(ModelBase):
@ -17,9 +14,7 @@ class Model(ModelBase):
#override
def onInitialize(self, **in_options):
tf = self.tf
keras = self.keras
K = keras.backend
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {3.5:8,4:8,5:12,6:16,7:24,8:32,9:48} )
if self.batch_size < 4:
@ -34,39 +29,39 @@ class Model(ModelBase):
self.encoder256.load_weights (self.get_strpath_storage_for_file(self.encoder256H5))
self.decoder256.load_weights (self.get_strpath_storage_for_file(self.decoder256H5))
if self.is_training_mode:
self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder256, self.decoder256 = self.to_multi_gpu_model_if_possible ( [self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder256, self.decoder256] )
#if self.is_training_mode:
# self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder256, self.decoder256 = self.to_multi_gpu_model_if_possible ( [self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder256, self.decoder256] )
input_A_warped64 = keras.layers.Input(img_shape64)
input_B_warped64 = keras.layers.Input(img_shape64)
input_A_warped64 = Input(img_shape64)
input_B_warped64 = Input(img_shape64)
A_rec64 = self.decoder64_src(self.encoder64(input_A_warped64))
B_rec64 = self.decoder64_dst(self.encoder64(input_B_warped64))
self.ae64 = self.keras.models.Model([input_A_warped64, input_B_warped64], [A_rec64, B_rec64] )
self.ae64 = Model([input_A_warped64, input_B_warped64], [A_rec64, B_rec64] )
if self.is_training_mode:
self.ae64, = self.to_multi_gpu_model_if_possible ( [self.ae64,] )
self.ae64.compile(optimizer=self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
loss=[DSSIMLossClass(self.tf)(), DSSIMLossClass(self.tf)()] )
self.ae64.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
loss=[DSSIMLoss(), DSSIMLoss()] )
self.A64_view = K.function ([input_A_warped64], [A_rec64])
self.B64_view = K.function ([input_B_warped64], [B_rec64])
input_A_warped64 = keras.layers.Input(img_shape64)
input_A_target256 = keras.layers.Input(img_shape256)
input_A_warped64 = Input(img_shape64)
input_A_target256 = Input(img_shape256)
A_rec256 = self.decoder256( self.encoder256(input_A_warped64) )
input_B_warped64 = keras.layers.Input(img_shape64)
input_B_warped64 = Input(img_shape64)
BA_rec64 = self.decoder64_src( self.encoder64(input_B_warped64) )
BA_rec256 = self.decoder256( self.encoder256(BA_rec64) )
self.ae256 = self.keras.models.Model([input_A_warped64], [A_rec256] )
self.ae256 = Model([input_A_warped64], [A_rec256] )
if self.is_training_mode:
self.ae256, = self.to_multi_gpu_model_if_possible ( [self.ae256,] )
self.ae256.compile(optimizer=self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
loss=[DSSIMLossClass(self.tf)()])
self.ae256.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
loss=[DSSIMLoss()])
self.A256_view = K.function ([input_A_warped64], [A_rec256])
self.BA256_view = K.function ([input_B_warped64], [BA_rec256])
@ -153,62 +148,67 @@ class Model(ModelBase):
return ConverterAvatar(self.predictor_func, predictor_input_size=64, output_size=256, **in_options)
def Build(self):
keras, K = self.keras, self.keras.backend
exec(nnlib.code_import_all, locals(), globals())
img_shape64 = (64,64,3)
img_shape256 = (256,256,3)
def upscale (dim):
def func(x):
return PixelShuffler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def Encoder(_input):
x = _input
x = self.keras.layers.convolutional.Conv2D(90, kernel_size=5, strides=1, padding='same')(x)
x = self.keras.layers.convolutional.Conv2D(90, kernel_size=5, strides=1, padding='same')(x)
x = self.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
x = Conv2D(90, kernel_size=5, strides=1, padding='same')(x)
x = Conv2D(90, kernel_size=5, strides=1, padding='same')(x)
x = MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
x = self.keras.layers.convolutional.Conv2D(180, kernel_size=3, strides=1, padding='same')(x)
x = self.keras.layers.convolutional.Conv2D(180, kernel_size=3, strides=1, padding='same')(x)
x = self.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
x = Conv2D(180, kernel_size=3, strides=1, padding='same')(x)
x = Conv2D(180, kernel_size=3, strides=1, padding='same')(x)
x = MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
x = self.keras.layers.convolutional.Conv2D(360, kernel_size=3, strides=1, padding='same')(x)
x = self.keras.layers.convolutional.Conv2D(360, kernel_size=3, strides=1, padding='same')(x)
x = self.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
x = Conv2D(360, kernel_size=3, strides=1, padding='same')(x)
x = Conv2D(360, kernel_size=3, strides=1, padding='same')(x)
x = MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
x = self.keras.layers.Dense (1024)(x)
x = self.keras.layers.advanced_activations.LeakyReLU(0.1)(x)
x = self.keras.layers.Dropout(0.5)(x)
x = Dense (1024)(x)
x = LeakyReLU(0.1)(x)
x = Dropout(0.5)(x)
x = self.keras.layers.Dense (1024)(x)
x = self.keras.layers.advanced_activations.LeakyReLU(0.1)(x)
x = self.keras.layers.Dropout(0.5)(x)
x = self.keras.layers.Flatten()(x)
x = self.keras.layers.Dense (64)(x)
x = Dense (1024)(x)
x = LeakyReLU(0.1)(x)
x = Dropout(0.5)(x)
x = Flatten()(x)
x = Dense (64)(x)
return keras.models.Model (_input, x)
encoder256 = Encoder( keras.layers.Input (img_shape64) )
encoder64 = Encoder( keras.layers.Input (img_shape64) )
encoder256 = Encoder( Input (img_shape64) )
encoder64 = Encoder( Input (img_shape64) )
def decoder256(encoder):
decoder_input = keras.layers.Input ( K.int_shape(encoder.outputs[0])[1:] )
decoder_input = Input ( K.int_shape(encoder.outputs[0])[1:] )
x = decoder_input
x = self.keras.layers.Dense(16 * 16 * 720)(x)
x = keras.layers.Reshape ( (16, 16, 720) )(x)
x = upscale(keras, x, 720)
x = upscale(keras, x, 360)
x = upscale(keras, x, 180)
x = upscale(keras, x, 90)
x = keras.layers.convolutional.Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
x = Dense(16 * 16 * 720)(x)
x = Reshape ( (16, 16, 720) )(x)
x = upscale(720)(x)
x = upscale(360)(x)
x = upscale(180)(x)
x = upscale(90)(x)
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
return keras.models.Model(decoder_input, x)
def decoder64(encoder):
decoder_input = keras.layers.Input ( K.int_shape(encoder.outputs[0])[1:] )
decoder_input = Input ( K.int_shape(encoder.outputs[0])[1:] )
x = decoder_input
x = self.keras.layers.Dense(8 * 8 * 720)(x)
x = keras.layers.Reshape ( (8, 8, 720) )(x)
x = upscale(keras, x, 360)
x = upscale(keras, x, 180)
x = upscale(keras, x, 90)
x = keras.layers.convolutional.Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
return keras.models.Model(decoder_input, x)
x = Dense(8 * 8 * 720)(x)
x = Reshape ( (8, 8, 720) )(x)
x = upscale(360)(x)
x = upscale(180)(x)
x = upscale(90)(x)
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
return Model(decoder_input, x)
return img_shape64, img_shape256, encoder64, decoder64(encoder64), decoder64(encoder64), encoder256, decoder256(encoder256)
@ -230,7 +230,7 @@ class ConverterAvatar(ConverterBase):
#override
def get_mode(self):
return ConverterBase.MODE_IMAGE
return ConverterBase.MODE_IMAGE_WITH_LANDMARKS
#override
def dummy_predict(self):