gaussian blur

This commit is contained in:
Jeremy Hummel 2021-05-23 18:44:10 -07:00
commit f6f4d9e446

View file

@ -243,11 +243,19 @@ class SampleProcessor(object):
blur_type = np.random.choice(['motion', 'gaussian'])
if blur_type == 'motion':
blur_k = np.random.randint(10, 20)
blur_angle = 360 * np.random.random()
img = LinearMotionBlur(img, blur_k, blur_angle)
elif blur_type == 'gaussian':
# blur_k = np.random.randint(10, 20)
# blur_angle = 360 * np.random.random()
# img = LinearMotionBlur(img, blur_k, blur_angle)
pass
elif blur_type == 'gaussian':
blur_sigma = 5 * np.random.random() + 3
if blur_sigma < 5.0:
kernel_size = 2.9 * blur_sigma # 97% of weight
else:
kernel_size = 2.6 * blur_sigma # 95% of weight
img = cv2.GaussianBlur(img, (kernel_size, kernel_size), blur_sigma)
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate)
img = np.clip(img.astype(np.float32), 0, 1)