mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-22 06:23:20 -07:00
fix: try inner function
This commit is contained in:
parent
19461ef76f
commit
f5edf30e84
2 changed files with 23 additions and 17 deletions
|
@ -308,15 +308,8 @@ def dssim(img1,img2, max_val, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03
|
||||||
nn.dssim = dssim
|
nn.dssim = dssim
|
||||||
|
|
||||||
|
|
||||||
def ms_ssim(img1, img2, resolution, kernel_size=11, k1=0.01, k2=0.03, max_value=1.0,
|
def ms_ssim(resolution, kernel_size=11, k1=0.01, k2=0.03, max_value=1.0,
|
||||||
power_factors=(0.0448, 0.2856, 0.3001, 0.2363, 0.1333)):
|
power_factors=(0.0448, 0.2856, 0.3001, 0.2363, 0.1333)):
|
||||||
img_dtype = img1.dtype
|
|
||||||
if img_dtype != img2.dtype:
|
|
||||||
raise ValueError("img1.dtype != img2.dtype")
|
|
||||||
|
|
||||||
if img_dtype != tf.float32:
|
|
||||||
img1 = tf.cast(img1, tf.float32)
|
|
||||||
img2 = tf.cast(img2, tf.float32)
|
|
||||||
|
|
||||||
# restrict mssim factors to those greater/equal to kernel size
|
# restrict mssim factors to those greater/equal to kernel size
|
||||||
power_factors = [power_factors[i] for i in range(len(power_factors)) if resolution//(2**i) >= kernel_size]
|
power_factors = [power_factors[i] for i in range(len(power_factors)) if resolution//(2**i) >= kernel_size]
|
||||||
|
@ -325,15 +318,28 @@ def ms_ssim(img1, img2, resolution, kernel_size=11, k1=0.01, k2=0.03, max_value=
|
||||||
if sum(power_factors) < 1.0:
|
if sum(power_factors) < 1.0:
|
||||||
power_factors = [x/sum(power_factors) for x in power_factors]
|
power_factors = [x/sum(power_factors) for x in power_factors]
|
||||||
|
|
||||||
# Transpose images from NCHW to NHWC
|
def loss(img1, img2):
|
||||||
img1_t = tf.transpose(img1, [0, 2, 3, 1])
|
img_dtype = img1.dtype
|
||||||
img2_t = tf.transpose(img2, [0, 2, 3, 1])
|
if img_dtype != img2.dtype:
|
||||||
ms_ssim_val = tf.image.ssim_multiscale(img1_t, img2_t, max_val=max_value, power_factors=power_factors,
|
raise ValueError("img1.dtype != img2.dtype")
|
||||||
filter_size=kernel_size, k1=k1, k2=k2)
|
|
||||||
loss = (1.0 - ms_ssim_val) / 2.0
|
if img_dtype != tf.float32:
|
||||||
|
img1 = tf.cast(img1, tf.float32)
|
||||||
|
img2 = tf.cast(img2, tf.float32)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Transpose images from NCHW to NHWC
|
||||||
|
img1_t = tf.transpose(img1, [0, 2, 3, 1])
|
||||||
|
img2_t = tf.transpose(img2, [0, 2, 3, 1])
|
||||||
|
ms_ssim_val = tf.image.ssim_multiscale(img1_t, img2_t, max_val=max_value, power_factors=power_factors,
|
||||||
|
filter_size=kernel_size, k1=k1, k2=k2)
|
||||||
|
ms_ssim_loss = (1.0 - ms_ssim_val) / 2.0
|
||||||
|
|
||||||
|
if img_dtype != tf.float32:
|
||||||
|
ms_ssim_loss = tf.cast(ms_ssim_loss, img_dtype)
|
||||||
|
return ms_ssim_loss
|
||||||
|
|
||||||
if img_dtype != tf.float32:
|
|
||||||
loss = tf.cast(loss, img_dtype)
|
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
nn.ms_ssim = ms_ssim
|
nn.ms_ssim = ms_ssim
|
||||||
|
|
|
@ -426,7 +426,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
gpu_psd_target_dst_style_anti_masked = gpu_pred_src_dst*(1.0 - gpu_target_dstm_style_blur)
|
gpu_psd_target_dst_style_anti_masked = gpu_pred_src_dst*(1.0 - gpu_target_dstm_style_blur)
|
||||||
|
|
||||||
if self.options['ms_ssim_loss']:
|
if self.options['ms_ssim_loss']:
|
||||||
gpu_src_loss = tf.reduce_mean ( 10*nn.ms_ssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, resolution))
|
gpu_src_loss = tf.reduce_mean ( 10*nn.ms_ssim(resolution)(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt))
|
||||||
else:
|
else:
|
||||||
if resolution < 256:
|
if resolution < 256:
|
||||||
gpu_src_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
gpu_src_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue